High Spectral Resolution Lidar (HSRL) Measurements of Ice Water Content: Approach and Initial Progress
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Our objective 1s to demonstrate a new method of remotely determining 1ce water content in cirrus clouds with the following approach:

HSRL measurements of multiple scattering
provide information on the shape of the
diffraction peak. The angular width is
directly related to the cross-sectional area of
individual particles. Effective radius and
perhaps one additional size distribution
parameter can be recover.

HSRL measurements of backscatter
cross-section provide the

projected cross-sectional

area of particles per unit +
volume as viewed from

the lidar.
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HSRL multiple field of view measurements and a multiple scattering model provide
information on forward diffraction peak of the scattering phase function. This 1s
used to derive particle size distribution parmeters. This distribution describes the
dimensions of particles projected on a plane perpendicular to the lidar beam. The
HSRL is able to isolate photons which have undergone one or more small angle
forward scatterings coupled with one molecular backscatter event.

Radar cross-section measurements

provide the 6th moment of the size Provides gamma distribution of projected Doppler radar measurements of particle fall Drag force relationship with
distribution when used with the lidar _> area particle size distribution _> velocity = assumption about the drag
Cross section. coefficient

Assumed projected area
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Provides ice water mass

First cirrus particle size measurements using multiple field-of-view molecular backscatter
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Our wide field of view measurements are
presented in terms of a normalized return =

WFOV signal-k*(110 nrad FOV molecular signal)
(110 urad FOV molecular signal)

Clear air WFOV Signal
Clear air 110 urad FOV signal

Where: k=

and where WFOV is the molecular wide-field of
view channel.
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