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4 lidar transfer equation is developed describing the
magnitude and pelarization of the doubly scattered return
signal resulting from the illumination of a homogeneous
cloud of spherical particles. ZXZvaluation of the resulting
multiple integral for water clouds with model particle size
distributions indicates that a significgnt fraction of the
received lidar return is due to double scattering. Both the
magnitude and jolarization of the calculated return are pre-
sented.

The doubly scattered lidar return is shown to be strong-
ly dependent on the ratic of the receiver acceptance angle
to the angular width of the forward scattering peak caused
by light diffracted around the cloud droplets.

Special case solutions to the double scatter transfer
equation are presented. These solutions provide a con-
venient way to estimate the magnitude of the doubly scat-

tered return for routine lidar work.
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2. INTRODUCTICH

Lidar has been used extensively to probe the atmos-—
rhere. Much of the research is summarized in a paper by
Collis (1969). The analysis of virtually all lidar data has
been based on an equation which assumes that photons re-
turned to the receiver héve undergone only a single scat-~
tering. The received signal due to multiply scattered pho-
tons is assumed negligible.

In general, wﬁen meésurements of light scattered from
small particies are made, van de Hulst (1957) indicates
that multiple scattering cannot be safely ignored unless the
optical depth of the scattering medium is less than 0.1,
Optical depths encountered in atmospheric lidar soundings
almost always exceed thig limit. Fhotons returning from a
penetration of only 50 meters into a typical cloud are
likely to have propagated through an optical depth of near-
ly ten times this limit. Even on a clear day the optical
depth is likely to exceed 0.1 for all returns received from
ranges beyond about 400 meters,

Lidar systems usually employ highly collimated trans-
mitters and receivers. angular beam widths are on the or-
der of 107> radians. In addition tbe time duration of bhe
transmitted pulse is short ( 10_8'sec.), and the receivers
have small time resolutions ( 10~7 gec,). These lidar

features place constraints on the possible prepagation paths
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of multiply scattered photons, which may reduce the multi-
ply scattered contribution. Because of these constraints,
van de lulst's optical depth criterion is likely to under-
estimate the actual range of optical depths for which the
single scatter lidar equation is valid. It seems uplikely,
however, that when lidar returns are received from optically
dense media, such as clouds, that propagation conatraints
can eliminate multiple scattering. In any case, lidar data
analysis could be placed on a more secure basis by a model
predicting the multiply scattered contribution to a lidar
return. The present paper atteipts to £ill part of this
need by presenting an easily applied model for the doubly
scattered lidar return from a cloud.

Several authors have calculated multiply scattered
lidar returns. Schotland et al. (1965) computed the doubly
scattered lidar return from the molecular atmosphere.
Curran (1971) treats the doubly scattered lidar return for
both bistatic and monostatic systems. His monostatic cal-
culations assume an aerosol which scatters isotropically
and are limited to cases involving rather small optical
depths. Both 3chotland and Curran concluded that the
multiply scattered contribution was negligible for the scat-
tering models they employed. They also suggest that for
other models it might become important. Of most interest

to the present study are the calculations of multiply scat=-



tered lidar returns from clouds published by Liou and
Schotland (1971) and by Plass and Kattawar (1971).

Liou and Schotland derive an expression for the inten-—
sity and polarization of light scattered from a volume
element in the laser beam into a second volume in the re-
ceiver field of wview wheré it is then scattered toward the
receiver. They then obtain the doubly scattered return by
sumning the contributions from each pair of these incremen-—
tal volumes w'ich can contribute to the lidar return at a
given time. 1In separate calculations this procedure is
extended tc the estimation of the third order scattering
(Liou, 1971).

Tlass and Kattawar (1971) use a Monte Carlo simulation
of the exact paths of individual photons to obtain estimates
of the lidar return due to all orders of scattering.

Unfortunately the calculations of the above authors
provide substantially different estimates for the importunce
of multiple scattering in lidar returns from clouds. These
discrepancies are evident in Fig. 2.1 where their results
are illustrated in terms of the multiple to single scatter
ratio. Fig. 2.2 presents the particle size distributions
used in these determinations. Exact agreement between the
curves shown in Fig. 2.1 should not be expected because the
authors used different cloud models in their determinations.

It appears unlikely, however, that the disagreement shown
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Fig. 2.1 The ratio of multiple to single scattering in a
lidar return from a cloud. The extinction cross section
per unit volume was 0.01 m™' for the Plass and Kattawar
(1971) calculations and 0.0168 m ' for the Liou and Schot-
land (1971) results.
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in Fig. 2.1 can be attributed to differences in cloud
models. The particle size distributions used by Liou and
Schotland are intermediate in size to the distributions of
Plass and Kattawar, furthermore, Liou and Schotland assume
a larger scattering cross section in the could than Plass
and Kattawar and should éherefore show larger multiple to
single scatter ratics.

The difference between the multiple to single scatter
ratios shown in Fig. 2.i is of fundamental importance to
the analysis of lidar cloud retunrs. If the calculations
of Liou and Schotland are correct, it appears that, with
the addition of a small correction for multiple scattering,
the single scatter lidar equation is valid for cloud pene-
tration studies. In contrast the Monte Carlo results indi-
cate that the multiply scattered return increases rapidly
as the pulse propagates into the cloud and quickly becomes
comparable in magnitude to the single scattered return.

The remainder of this paper presents the following:

1) a simple intuitive approximation for the ratio of Nbb
order scattering to single scattering, 2) a comparison of
this approximation to the results obtained by Lion and
Schotland, 3) a development of a double scatter lidar trans-
fer equation for realistic lidar geometries and homogeneous
clouds of particles which scatter light anisatropically,

4) simplification of the doubly scattered lidar equation for
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easy application in estimating the doubly scattered contri-
bution to a lidar return, 5) typical doubly scattered lidar
returns calculated from the transfer function and compari-

sons with results obtained Lo other authors.



3. E3TIMATES OF MULTIFLE SCATTERING 8

3.1 Development of & multiple scattering approximation

In this section the multiply scattered contribution to
a lidar return is estimated. This estimate is possible be-
cause approximately ome half of the total energy scattered
by cloud droplets is deflected into a narrow diffraction
peak. Small angle approximations are used to calculate the
multiply scattered return due to this portion of the scat-
tered energy.

Consider the geometry of Fig. 3.1 where a laser pulse
illuminates a homegenecus cloud with a base altitude X, .
Then consider the power incident on the reciever at a time
t after the emission of a lasger pulse with a time duration
At. Because of a propagation time constraint, singly scat-
tered photons cannot contribute to this signal unless they
have been scattered from a shell of thickness cAt/2 located
at a range ct/2. As the primary pulse propagates from the
cloud base (x = xc) to the maximum range (x = ct/2) part of
the pulse energy is scattered by cloud droplets. Thus if
the power transmitted is Go and the scaftering Croes sec-—
tion per unit volume of the cloud is (3, the power trans-
nitted without scattering to x = et/2 is given by Beer's
law as follows:
3. @ = Go'e,"{a

where: d = ¢t/2 - X, .

d
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Not all of the scattered energy is lost from the trans- 10
mitted beam. Those photons scattered through small angles
continue propagating near the primary beam and travel al-
mest the same x-distance as the primary pulse in a given
time interval. Therefore the photons scattered through
small angles arrive at x = c¢t/2 at nearly the
same time as the primary‘pulse. These scattered photons
differ from the photons of the primary pulse only by having
8 wider spatial and angular distribution.
The diffracfion péak has an approximate angular half-

width 6 given by:
3.2 Oy =iP\F
where: A = wavelength of the incident radiation

r = radius of the scattering particle.
The water droplet size distributions measured in clouds
usually have a modal radius between 2 and 20 um; there-
fore, at the ruby laser wavelength (A = 0-5945fun) the
angular half-width E% of the diffraction peak lies approx-
imately in the range of 0.02 to 0.2 radians. Because Qd

is small the scattered energy contained in the diffraction
peak is not lost lost from the primary pulse as the pulse

propagates through the cloud layer between x, and x = ct/2.
The apparent optical depth of this layer is therefore only
one half the actual optical depth and Eq. 3.1 can be modi-
fied to give the total power incident at x = ct/2 as

followsa:
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Fig., 3.2 illustrates the path of a typical multiply scat-
tered photon. The power calculeted from equation 3.3 in-

cludes contributions due to photons scattered by smell
angles as well as the directly transmitted photons. For
any of them to reach the receiver at a time t after emis-
gion of the laser pulse they must undergo a large angle
gcattering in the slab cint/2.

In order to estimate the scattering from this layer,
consider a cloud with scattering properties characterized
by a Mueller matrix* with elements Pl and P2 which satisfy
the following:

3.4 Pi(6) >> P,(0) for 6 small, and
pi(@) 2 P,(6) for all other 6

3.5 Pl(e) = constant for B near 7 radians,

The first condition insures that polarization effects have

little influence on the multiple scattering observed with

*For a discussion of the scattering matrix and 1ts applica-
tion to the calculation of electromagnetic scattering from
spherical polydispersions see Deirmendjian (1969). The
subscript identification of matrix elements used here is
defined by Eq. 4.4. ™Tie procedure for transforming
Deirmendjian's modified matrix elements into the Mueller
matrix form used here is presented in Appendix A.
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Fig. 3.2 Typical path of a multiply scattered photon,
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an unpolarized receiver. An inspection of the matrix

elements presented in Appendix A indicates that condition
2,4 is satiafied for the cloud models considered in this
paper. The second condition is introduced here only as a
convenience; it considerably simplifies the deriwvation
which follows, but it is not essential and will later be
discarded. Using conditior 3.5, the slab ¢ A %/2 shown in
Fig. 3.2 can be considered a diffusing reflector where a
photon loses all memory of its incident direction.

If the region of this slab illuminated by the transmitted
pulse and the associated small angle scattering is within
the receiver field of view, the power incident on the re«

ceiver without undergoing further scattering is given by:

A .d . ' ~(3d
3.6 G=Go'a@d+p /Z'Q'QT—At'WRL_}(T;) ‘wk-g,ﬁ

where: I3 = the scattering c¢ross section per unit volume
Pl(ﬂT' ) = the value of the scattering phase function
at T radians
Wy = 50lid angle subtended by receiver when viewed

from the slab c-4& /2.

The additional e *¢

term accounts for the fracticn of the
rhotons scattered while propagating out of the cloud; how-

ever, some of these scattered photons also fall on the re-

ceiver aperture and are aoct lost. Most of the photons
which are scattered in traversing out of ti12 cloud but

which nevertheless contikbute to the received signal leave
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the slab at angles near the systen axis. They are then

scattered through siall angles into the receiver. A4 photon
which leaves the slab at an angle near the system axis and
then undergoes a large angle scattering is likely to pro-~
pagate out of the receiver field of view before undergoing
another large angle scattering which directs it back towards
the reciever. In the same manner, a photon which leaves the
slab at a large sagle to the receiver gxis is likely to pro-

pagate out of the field of view bafore undergoing a scat-

tering which could direct it towards the receiver. If the
cloud altitude X, is much larger than the penetrationm depth
d, such that the solid angle Wy subtended by the receiver
varies little with pesition in the layer between X, and
ct/2, small angle scattering serves only to redistribute
the already almost isotropic light scattered from the slab.
The photons scattered away from the receiver by small angle
scattering are compensated for by the other photons scat-
tered into the receiver by small angle scatterings. OSmall
angle scattering therefore, does not contribute to the
attenuation of the pulse as it propagates out of the cloud,
and the total power falling on the receiver can be written

as:

-B-d+B-d/a at pr) ' _p-d+pd/z
3.7 G““GO‘& (3'954—'44%-(,3( e .

After combining the e"ﬂd terms and expanding in a power



series Eq. 3.7 becomes: 15

PN
5.8 G <8, S5 wep Bg_)-e?wd(p@-d Jedl

If the following identifications are then made:
We = AT 4 so0lid sngle subtended by receiver
£5,ﬂ(7f9-= E#} = backscatter cross gection
.uzﬁz =‘Ebér' = optical thickness
where: A = area of the receiver
r = ct/2,
then the first term of Eq. 3.8 is the usual lidar equation
for the singly scattered lidar return as presented by
Collis, (1969). The other terms in this equation represent
contributions due to multiple small angle scattering. Since
the probability of N scatterings occuring in a layer with
optical depﬂu&d is proportional to(ﬁdﬁ the succesive
terms of the power series can be identified as the contri-
butions due to successively higher orders of scattering.
Thus the ratio of the Nt order contribution,(gﬂ » to the
gingly scattered return, (9
B ( _d)N~I
5.9 G./6 = (%75!'

Condition %.4 was applied in the development of this

4 v can be written:

equation, therefore the matrix element Pl(e) has been set
equal to its value at T radians for all angles near W ra-
dians. Inspection of the matrix elements presented in

Appendix 4 shows that this is a relatively crude approx-
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imation. A correction can now be applied to these ratios

to eliminate the need to assume isotropic scattering near ',
The scattering phase function describing the large angle
scattering in this slab should be the average value of Pl(e)
encountered by photons returned to the receiver after N scat-
terings rather than the wvalue at T, With this correction

the ration presented in Zg. 3.9 becomes:*
N- !
3.10 @"’/6, = <Rm> (3-d)
: Pl (N1

where <Plfnxhis the weighted mean of the matrix element Py

near the backscatter directicn, given by
ar
3.1 <Bim7 = 4w L Mu(8,) P,(Tr-e,)-sin(el) 46

and MN(el) is the probability that a photon scattered N

times undergoes a scattering at an angle 61 in the slab

cat/2. The (B-1) small angle scattering events which each
produce an angular deflection less than ed can produce a
maximum angular deviation (N-1)8.. Therefore, in order %o

allow a photon to return to the receiver, the large angle

*This equation could have been derived directly without
using the isotropic backscattering assumption expressed by
condition 3.5. However, in that case it would be necessary
to consider each order of scattering separately and further-
more to break each scattering order into all of the possible
combinations of scattering events with n scatterings before
and m scatterings after the large angle event, where

n+m = N=1, In either case the same expression results.
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scattering, which takes place in the s cAt/2 must pro-
duce a deflection greater than - (N-l}ﬁd. The distribu-

tion function Mg(8) must therefore satisfy the condition
3.12 My =0 for B <(W-1)-6&.

For the special case N = 2, MN(B) can be calculated exactly.
Only two possible scattering conditions exist: a single
small angle scattering followed by a large angle scattering
in the slab c'at/2, or else a large angle event in the slsab
followed by a small angle scattering. In either case the
probability distribution Mz(e) is determined by the scat-
tering phase functiorn near O rad and can be calculated as

follows:

ACY
5 )
2'rr5o Plg) sin(8)d8,

3,13 M,(8) = 6< 84

Mz(e') =0, 6’ > 9&.
sfter a large number of scatterings Rossi (1952) shows that
the angular distribution of photoms becomes Gaussian. The

probability distribution MN(S) is then given by
- B61/48%7
5.6 M Q) = (k)& G140

where
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8q-N-1

-0y .
2,148 K= zwg e N-sln(e)-clB

o

and
8 64

505 <81 = (w)-{ 8%Ple)sin(e)-de /[ BleYsine-de.
o o

Becauge the initial shape’ of the diffraction peak is nearly
Gaussian*, this relation can be expected to hold true even
for small values of N.

Eq. 3.10 can now be used to estimate the relative con-
tribution due to individual orders of multiple scattering.
Two major assumptions are implicit in these estimates:

1) The dominant contribution to the multiply scat-
tered return consists of photons which undergo

only a single large angle scattering.

2) The angular field of view of the receiving
telescope satisfies the following condition

316 p, z(i'%g—e—d'—d + e

where 2fk = the transmitted beam divergence,

This condition expresses the requ .rement that after N-1
scatterings, each with sngle less than Qj the scattered
photon is still within the receiver field of view. For most
lidar configurations this requirement restricts application

of Eq. 3.10 to relatively small penetration depths.

*In appendix A, for several particle size distributions, com=-
parisons are made between exact values of Pl(Bl) and a
Gaussian fit to these functions,
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2.2 & comparison with other multiple scattering

calculations

In Fig. 3.3 the approximate multiple scattering egua-
tion (3.10) is compared to the double scatter calculations
published by Liou and Schotland (1971). Both calculations
assume a homogeneous water cloud with a particle size dis-
tribution given by the cloud model C-1 {Appendix #). The
scattering cross section per unit volume @Sis equal to
0.0168 m-l. The scattering matrix elements presented in
Appendix A and Eq. 3.11 wers used to obtain the matrix

elements required by the approximation. The backscatter

velue of Pl and the average values used are

-Ern-’_ = 0.05 ——T‘rr,'_ - 00055
3.17
(o) (r@m>,

The maximum asngular deflection within the diffraction peak
was estimated as 4° by visual inspection of the scattering
matrix elements. This value is needed to determine the
mean square scablering anzle with Eg. 3.15.

The lidar system assumed in calculations by Liou and
Gehotland transmitted a pulse with a Gaussian angular dis-
tribution. Only #0% of the transmitted energy was assumed

to fall within the receiver field of view. Because the
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Fig. 3.3 A comparison of the multiple to single scatter
ratios, 8, /G, , predicted by Eq. 3.10 (solid lines) and the
ratios calculated by Liou and Schotland (dashed line).

The values of (3,/@, derived by liou and Schotland are
approximately one tenth as large as their G, /Q| values.
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assumed laser beam divergence was larger thruan the receiver
field of view, condition 3%.1G shows that the approximute
solution (i3y. 3.10) is not directly applicable, However,
failure to satisfy this condition can not explain the more
than ten-fold disagreement between the double scatter esti-
mates shown in Fig. 3.2, ‘Consider the doubly scattered con-
tribution from that portion of the transmitted pulse inside
a 5 milliradian cone, If Qd is conservatively estimated as
4° condition 3,16 is satisfied up to a penetration depth
of 26 m for the inside half of the transmitted beam. The
double scatter contrivution from this portion of the bean
can be estimated with Zq. 3.10. 3ince 30% of the trans-
mitted energy* is contained in this 5 milliradian cone ,
the ratio @2/61 can be estipated for the inner portion of
the ftransmitted beam by multiplying the wvalues in Fig, 3.2
by 0.30. Clearly, this estimate, which considers only a
small portion of the transmitted pulse, also yields a ratio
of double to single scattering much larger than that ob~
tained by Liou and Schotland. Thus the discrepancy which
appears. in Fig. 3.2 cannct be attributed to the failure of
this system to satisfy condition 3.16.

An attempt was also made to compare the approximate

*A Gaussian beam with 80% of its emergy contained in a 10
milliradian cone, has 30% of the energy inside a 5 milli-
radian cone,
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results obtained from bg. 3.10 to the Monte Carlo determina-

tion of multiple scattering published by Flass and Hattawar
(1971). Compariscns were .o0ssible only for the homogeneous
c¢loud model composed of drcplets with a nimbostratus model
size distribution (¥ig. 2.2). The values of <ﬁ(ﬂ9%}equired
by iq. 3.10 were difficult %o obtain from the graph of
scattering matrix elements presented by Kattawar and Tlass
{1968). These values were obtained by visual estimates

and contained uncertainties as large as a factor of two.
Within the limits of this uncertainty Zg. 3.10 provides a
nultiply scattered return wiich agrees with the Monte Carlo

estimates presented in Fig. 2.1
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4, DERIVATION OF A GENERAL TRANSKFER FUNCTICGN FOR DOUBLE
SCATTERING

The double scattered coniribution to a lidar return
from a homogeneous cloud of spherical particles will now be
calculated in exact form, These calculations assume the
coaxial systenm geounetry shown i1 Pig. 3.1. Details of the
scattering geometry are illustrated in Figs. 4.1 and 4.2,
The radiant power doubly scattered, first from the primary
beam in the incremental volume dV1 inbo the volume element
dV2 and then from dV2 into the receiver, is calculated.

The resulting expression i+ intagrated over the volume
included in the transmitted bsam and the reciever field of
view to obtain the doubly scatieredl power incident on the
receiver.,

Incoherent scattering is assumed; therefore the mag-
nitude and polarization of the doubly scattered return can
be represented by means of a Stokes vector*, Io' The deri-
vations in this’paper will use the Jtokes vector with com-
ponents I,Q,U,V as defined by Shurcliff (1962) rather than

the modified I,,I,,U,V form used by Chandrasskhar (1960)

l,
and Deirmendjien (1969). This form of the vecotr was

chosen because it simplified the development which follows,

4,1 A Stokes vector description of the transmitted laser
pulse

*See Appendix B
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, /
* system axis ;

— _— - cloud bose

Y BN S 0

Fig. 4.1 Geometry used for double scatter integration. The
lidar is located at point O. The incremental scattering
volumes are specified by spherical coordinates, x secf,p & ,
for the first volume DVl and y,8,8 for the second volume, dve.
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system axis

A

Fig. 4.2 Double scatter geometry defining Stokes vector
reference planes and rotations required for transformations
between these planes. Lidar is located at point O with the
first scattering at S, and the second scattering at Q.
Transmitted Stokes vector is referenced to plane 0,A,Si,
the receiver response %o plane 0,4,S,, and the scattering
plane is Q,8,,5;.
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As the first step in the double scatter derivation the

magnitude and the polarization of the lrunsmitted laser
energy must be represented in a vector form for all trans-
mitted propagation directions (F,EQ. The transmitted Stokes
vectors will be defined in terms of the referemnce directions
used by Chandrasekhar (1960)., These reference directions
are defined by a pair of axes, both perpendicular to the
plane containing the propagation direction and the system
axis (plane 0,A,5 in Fig. 4.2). The polarization and rel-
ative angular distribution of the transmitted intensity are
aggumed time independent. The transmitted polarization is
also assumed independent of the angular displacement from
the system axis. With these assumptions, if the distribution
of transmitted energy is radially symmetric and the beeam is
linearly polarized, the transmitted Stokes vector E; can be

written:*

1
1 T -G(e-r/e): ()-(°?:"’€)
4.1 . t /)cle sin 2§

where £, & and x are definmed in Fig. 4.1, and
¢ = gpeed of light
Q o(t) = transmitted power {watts)

R = propagation distance from laser

— o

*Po an observer locking into the laser from an angular
position im the beam 0 ,f, the transmitted light described
by Eq. 4.2 will appear linearly polarized with the electric
field vector normal to the propagation direction and rotated
counter clockwise by an angle '11’/1.#% with respect to the
O,A,S plane (Fig. 4.2).
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1

£
g( P)

time

relative angul.r distribution of trans-
mitted intensity (1/str.).

The angular distribution function g(P) is normalized such

that
21

3
4.2 L dgL 9((3):Sin(>‘d(3

#.2 The basic double scatter integral

The Stokes vector 4l describing the intensity scattered
from dVl to dVé and then fron dVé to the receiver is found
using the linegr trensfermations of Chandrasekhar (1960),

adapted to the I,Q,U,V form of the Stokes vector*.
‘pE(R A (53; F+ sece ))

4.3

-, (g e
Pe) B6)

T L(;zj)lod\/d\/

where Y1 Tos P', 6,5, 8,y and @ are defined in Fig. 4.1
and @g = scattering cross section per unit volume
B = extinction cross section per unit volume
ﬂfzé) = scattering matrix {Deirmendjien, 1964} adapted
to I1,3,U,V form of Stokes vector. {(Appendix A)

fined in the
. ormation which converts matrices de
IThe tTQESfV form into the I,5,U,V form is discussed in

]

Appeﬂalx A
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Pl P2 0 0O
P F 0 o
2 1
4ot Py =
0 0 . P5 P4
0 0 -P4 P3

Rsxsec? R A TR £~
L(-gD = the matrix which transforms the Stokes
vector into a coordinate system rotated
in a right hand direction by an angle
(+$) about the propagation direction

(Shurcliff, 1962).

1 0 0 0
0 cos82,  ~sin2, 0
4.5 L-?) =\ 0 gin2; cos2/ O
0o 0 0 L
4.6 j:= x*sectp+yl +2-y,-X- Secp-cos b

—y
The vector intensity 4T calculated from Eq. 4.4 is
referenced to an axis perpendicular to the direection ’,E:
and perpendicular to the scattering plane (O, 82, Sl).

Because the scattering plane orientation changes with
changes in the position of dVl and dV2, df must be trans-
formed to a set of fixed coordinates bhefore an integration
over scattering volumes can be performed, It is convenient
to rotate a1 by an angle -8 (Fig. 4.2) to a new pair

of axes also perpendicular to the direction(33§'but now
with one axis contained in the plane 0,A,5 and the other
axis perpendicular to this plane, The receiver response

I
to intensity incident from the direction ?,g'and referenced



29

to this set of axes can then be described with the operator

A o
sy u-T(p L)

e
where'TléEQis the Mueller matrix* describing the receiver
characteristics and o= (1,0,0,0). The unit vector % arises
in this expression because photodetectors respond to only
the first component of the Stokes vector. Operating on
Eg. #.3 with Eq. 4.7 and multiplying by the solid angle sub-
tended by the receiver aperture when viewed from 32 yields
an expression for the power incident on the receiver, i< y
due to scattering from dVl and dV2 and then from dV2 to the
receiver. For SE in the receiver field of view:
4.8 dezz [551 “tanp-sing- % ei(aE(R'-xc’_(SQCP’FSQCF/))

z

- T(p,g}-[@w}-ﬁe)ﬂfgsﬁo-ato-dgdx-dys dy
For 82 cutside the receiver field of view
4.9 &, =0

Where A = area of receiver aperture and the geometry of

Fig. 4.1 has been used to derive the following:

*A procedure for calculating the Mueller matrix for a com-
plex optical system is described by Priebe (1970).
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4,10 d\/’ :‘Xl'S&C_SF -51.r1€ C‘f) -cl% A)(

4,11 d\fz"“ tjlz'ﬁ‘lﬁe,deyags'd'j'

Congider an ideal receiver characterized by the following

Mueller matrix:

:-—- ‘ 4 . e P — p
w12 T8 ) =F-L(¢)
Where F is the Mueller matrix describing a filter used by
the receiver to analyze the polarization of the incoming
signal (Shurcliff, 1962). The geometry of Fig. 4.2 irndicates

/
that a rotation t about 0,A is equivalent to a rotation -E

followed by a rotation €; therefore
4,13 (&) =LEE) L) = L(e-§)

Using Egs. 4.12 and 4.13 the matrix operation of Eq. 4.8

can be written:
P ] S

san QTR Them) Be BEJ Teg) 7

= o(‘t-Rfcy 3((9) Guﬁﬁ.i S(\P{z;?' }ez>

where —Y = 55}'*%

For economy of notation the definition

415 @' = T-¥-€
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is introduced. The vector S is given by

4.16

. .
-,w,1{v,w,| Cr @ s 78,017 18 FE 8 emey

cos 2y [P,l&. )-{ P I+ PR }enzx} + P, 8y r{?.lm + P8, ""'?x” —wn2y [p.(e,w,w. N2y - Py L8y iR, \G,Hmz‘\]

-

Sty x 8. 8,0 - N - B

unzy [P,w. ) {P‘ 81+ Py LB, Feom 21} + P {8y FPRLE H PP Vooely } FeosZy PPy 18y 1Py 18, tain2y T P8y 1 Py LB am2y
o . . .

— PP 18 JunZy — Pyf, R, 08 Jan2y

L.

where - =P+¥E .

Substituting Eq. 4.14 into Eq. 4.8 and integrating the
spatial coordinatgstnguﬁ%x,gamigover the volume common to
the cloud and the receiver field of view leads to the
following equaticn for doubly scattered power incident on

the photodetector of the receiver:
~ Pr i1g T
®,(+)= A-@;-S.F'-J 3@-qun[a-d(:f sin e,-de’j dg
o 4 mnx° ° -?
4.17 J de L<="’<:~(‘t‘ RA). ef@E(R_x‘*(S&cPH%F Dd
o (oY 2
Y2
P
N T
L ter? g

where Y1 max is the distance a photon scattered at point S1

1

in a direction 8 ,¢ can travel without leaving either the

receiver field of view or the cloud. ZEg. 4,17 is the basic

double scatter integral. The remainder of section 4 will be
devoted to reducing this cumbersome multiple integral to a

more usable form.
4.% 4n upper limit of integration for the yl-integral

The upper integration limit for the yl-integral, Y1 max?
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is the distance a photon can travel from Sl, in a directicn
91,¢ , before it leaves the cloud volume visible to the
receiver. This l1imit is determined in one of three ways de-
pending on whether the photon 1) propagates out of the re-
ceiver field of view before leaving the cloud, 2) travels
up into the cloud nearly parallel to the system axis such
that it never leaves the field of view, or 3) escapes through
the c¢loud base before leaving the field of view,

In the first ¢ase where the limit is determined by the
edge of the receiver field of view the following egquation
involving Y1 max ©20 be obtained from the geomeiry of Fig.

4.2
4.18 ¥y pax sinel = tan‘f, m(x gec ?r + ¥1 pax ©OS 91)

where 1, is the value ofV? obtained when y, lies along the
edge of the receiver field of view (i.e.Y?f-OmwhenF’-—'Fr).

Solving Eq. 4.18 for ¥1 max yields the following

4.18a x-tanY}m
Y1 max ~

sin@® - cos thqm

In order to obtain y; .. from Eq. #.18a an expression for
nmis required. Setting (J’:P,. in Pig. 4.2 and using the

law of cosines for a spherical triangle yields:

419 Co® P = COS Nm- cos P+ Sin M Sinf)-cos &,
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Substitutingﬂl-s'ml‘qm =Cos V), rearranging terms, squaring
and applying the quadratic equation yields:

. . ) ;
4,20 Sln‘r’mz Slnp'msprtosgﬁicos[;\{'l SlnP'Srnqu—CoSz‘or_
I=oinp sinip
The half-beam divergence azngle FL_of most Jasers is less

than 2.5 x 10"5 radians while the half-angle divergence of
the receiver field of view PV'iE usually less than 5 x 10~
radians. Therefore, because‘qmﬁpL+Pr and f’ﬁ[or small angle

approximations can be used to exyress EqQ. 4.20 as:

4.21 )= P cos 954-‘}5'_2_?15&”155

The sign in front of the radical is positive because by defi-
nitionf]h,must always be positive. Application of the small
angle approximation and the substitution of Eq. 4.21 into

Eq. 4,18a yields:

422y - "'(P'C°5¢+\fer‘-pl-s'.n’¢)
v Ay
S 6oe 6, (o con g (or 7 st )

where y 1 max is the upper limit of integration for the y-

integral in the basic double scatter equation (Eq. 4.17)
when tha e distance is limited by the receiver field of
view,

When & ray from 5; in direction 8,4 is nearly parallel
to the receiver axis it may not intersect the edge of the

field of view, Inspection shows that whenever this occurs
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the denominator of LEq. 4.22 is negative, therefore if
. N '

4.,22a  Sin @; £ cos 9, (P Cos P + 4(3,3+ P"Sqn 535)

the upper limit of the yl-integral

4.,22h :Yl max = (D e

4 third expression for Ty max OCCUrs when a ray from Sl
in the direction Ql,¢ intersects the cloud base before
intersecting the edge of the receiver field of view. This
expression is obtained by considering the geometry of Fig.
4,1 in the special case where 91 is increased until the
peint 82 ig at the cloud base altibtude X . The angle? is
small ( see the derivation of Eg, 4.20) therefore the cloud
base can be considered perpendicular to the line O’Sl' With

this simplification the geometry of triangle 0,81,32 yields

4,22¢ x-secP - X,

Y1 max -cos 8

This is the correct upper limit for the yl—integral whenever
81 is greater than T/2 and the distance to the cloud base
(Eq. 4.22c) is less than the distance to the edge of the

receiver field (Eq. 4.22).
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4.4 Application of the propagation time-distance constraint

A photon transmitted at a time t' and received at time
t must travel a total distance c{t-t'); in Eq. 4.17, this
constraint on propagation distance is included in the trans-
mitted power function. The temporal structure of the treng=-
mitted laser rulse can be separated from the interactions of
system geometry and proragation delasy effects if Gb(t—R/c) is

rewritten with the sid of the Dirac delta function ss follows:
At ,

4.23 @Q(Jc-R/c)=S B ) S~ +R/) dt’
]

where At = time duration of the tramsmitted laser pulse
G?O(t') = transmitted power measured at the laser
exit pupil
R = total path length = ¥ se +iy +
CPTYT Y,
Using this representation of the transmitted bnower the basic

double scatter integral (Eq. #.17) can be rewritten as

P At L Iy
B )=Ap 2w I-‘-j Qo(t’)'&f’fg((:)-’ta,n(: dd d¢

o Ymax N
4,24 J ax S§(H/-++R/). —35(9“%c(sec.‘0+sec(of§
% o ylem € dy

I.TT__A
| S-dg
o
If £(y) is an arbitrary function and a is an arbitrary con-

stant, the delta function has the following properties:



4,25 S(Q(j}): Tgl_fj?gis(j“jw) where 'Q(jw)=0
and
4.26 54(53-3(3%»% = $(a)

With the aid of Eqs. 4.25 and 4,26 Eq. 4.24 can be expressed

ass ~— . at L I
ez(t)"“ A'F’:'A‘L'F'C'J @o(t’)'d‘tfﬂ(E)'{an P'd(’jémei‘df
N S ,,? Q*SE(L ¥ (secprsecy’ »
o yC)L‘»fz(mose)(x'*smP—-Lx secp)|

‘S'armn).’

S0y dt’xf "Sag

Where R and j S df are evaluated at the point t,t', P Ql,ylo
and where R evaluated at the point (t,t') is identified as L.
The values of L and Yo can be calculated from Eqs. 4.28 and
4,29,

4,28 L = c(t-t')

4,29

. L2 - 2Lx-sechp
2x -secp cosgl + 2L - 2x-secp

Y10

The y-integral of equation 4.27 can assume the following

values
f | X

4.30 67y - 71004 = 1 if 04¥04T) pax
X .
" =0 if 7,040

=0 if y10> Y1 max
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Therefore, if new limits of integration are defined for the
t',(), 91,¢ and x integrals such that for all points inside

the new integra¥ion volume O:Eyldé Eg. 4.30 can be

71 max’
applied to eliminate the 7y integral. These new integra-
tion limits are simplified if values of the parameter t are
restricted as follows

2 xc-secfr

S + Ato

4,31 t >

The smallest values of t ‘allowed by this expression can be
interpreted as the earliest time at which photons from all
portions of the transmitted laser pulse can contribute to
the received signal. For typical lidar system parameters
this minimum value of t occurs about 10"8 seconds after the
first return is received from the cloud. Because most lidar
receivers have a minimum time resclution cn the order of

10_7 seconds condition 4.31 does not substantially reduce

the generality of the double scatter equation.

4n inspection of the equation for Y10 (Eq. 4.39) shows
that for any possible values of t',P,EJl, and ¢ within the
integration limits of Eq. 4.27 a value of x can be chosen
such that 0 £ y,4< ¥y méx' Thus, if condition #.31 is sat-
igfied only the x integration limits need modification to in-
sure that Eg. 4.30 can be used to eliminate the yl—integral.
However, rather than calculate these new limits for the x-ine

tegral, the subsequent integration is simplified if the x-in-
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tegral is first transformed into an integral in W, where W is

given by
4.3 W= L/2 - x-8ec

This transformation allows 4.27 to be rewritten as:

[

a Pe L
4.35 Qlp)= A-@;-S_-F‘-J'C,-J t&(t’) dt’s c}(f)s;anPJsinG] d6,

e

1L5. -(55 (L% (secp +secp))

-dW

“

2(t~cosq) Wi /2 (1+ c0s§))

Notice that L/2 is the maximum possible distance from the
lidar system which a photon transmitted at t' can travel
and still be received at time t. The variable W is there-
fore the distance from the first scattering event of a
double scatter combination to the maximum possible

distance L/2.
4.5 Integration limits for the W=integral

The limits of integration for the W-integral are the
result of two separate constraints: 1) the first scattering
event cannot occur below the cloud base because the scat-
tering cross section per unit volume has been assumed to

be zero outside of the cloud, and 2) according to EZq. 4.30



39

the distance from the first to the second scattering, y,,
atis < . d

must satisfy the condition 0L ¥,0& T pgys *# value

for 'miﬂcan be derived from the first constraint by substitu-

ting the cloud base altitude X, into BEq. 4.32. This yilelds

[

4,34 WQ L/2 - e sec(—*

L/2 - x

)

-

c

The W-limits required to satisfy the second constraint
are now developed. As a first step in this development Y10
(Eq. 4.29) is set to the extreme values allowed b7 Eq. 4.30.
These eguations are then transformed into equations in W with
Eq. 4.34. The resulting expressions are solved for W,
and Ul . From the eguation T = 0, the following value

is found for ‘.-Iu,

4,35 Wu = 0.

When Y10 ® Y1 max and V1 max is determined by the edge of

the receiver field of view, wﬁ (Eq. 4.18a) becomes

L_tan(hy2)

4.36 W= o an@y2)”

When ¥145 = ¥1 pax 18 determined by the cloud byse (Eq. 4.22a)

Wﬂ. ig found to be

\
4,37 wp o= %{xcz . (12 - 2Lx) coti6/2) - X,/ 2
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The upper limit of the W-integral is always given by
Lq. 4.3, For the lower limit it is necessary to chocse
the smallest of equations &#.35, 4.36 or 4.3/. By setting
Eq. 4.34 equal to 4.36 and 4.36 equal to 4.37 the following
conditions can be derived for the range of aprlicability
of the wz expressions. ‘The limit w‘Q is given by Eq.
4,34 if 0< @, ¢ Oy where

( L-tan 22
4,38 B, = 2-tan™H T
.

Ir 6,< B, <§,Wj is given by Eq. 4.36, where
1 .‘; L - xc-secﬂm - X,

4,39 = 2.tan_
61 . xc .tan 7?m

and it B. < quﬂg wQ is given by Eq. &4.37.

4.6 Evaluation of the g-integral
-
Consider the ~integral of Eq. #.33. The integrand §
presented in Eq. 4.16 is a function of 6)6182)95 and 91. in
inspection of Fig. 4.2 shows that §€ and 6, are functions of
the inderendent variables x,r.@l,gzj’ and y;. Therefore,
because they are not functionally dependent on g the E_;-inte-—

gral can easily be evaluated
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4.80 - J”“ 1
. l(pTT'l cS-d%-—‘:

27 [P, ) R(E )+ R(6)-F,(8)]

i oo 2600 [RG)EO) R P(ememel) A5y
TI'SI 2(0‘5 ‘P)[ H g Iy
0

Equations for cos 2@-@') and sin 2(@~¢) will now be ob-

tained. Applying the law of sines in a spherical triangle to

Fig, 4.2 yields:

sinp- sin &

sin {3'

and
sin 7} sin@

4,42 sin€ = —:-)--—-—-——-—

sin e'
where

‘ ¥,-sin 6

4,437 sm) 1 1

2 2 .. 7
(x~secr7+ ¥yrcos ) + y,“ sin 91
is obtained from the gecmetry of the plane triangle O,S,SE.
From' the law of cosines in a spherical triangle:
4,44 cos$ = -cos ¥ cos€ + sinY gin€ cosP '

Because e <P <5 x 10 5, cosP 1~ (’->'2/2 With the aid
of the identity lor the cosihe of the sum of angles this

approximation can be applied to 4.44 yielding:
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9'2 sin § sin €

4,45 cosp = -cos ¥+€) -
2

From definition 4.15
4,46 —cos (¥+€) = cos @w-¥-¢) = cos 525'.

Substituting Eqs. 4.41, 4.42, and 4.46 into 4.45 and then
applying the small angle approximation (because 7P<<1)

yields: '
4,47 cosg ' ¥ cos¥ + Qf sin2¢

This equation and the following double angle identity
4,48 cos 20 = 2 003295 ' -1

yield, after dropping terms in YJE[DE:

4.49 cos 2¢' = cos 2F + 27)[0003 gs-sin?@/.

Eq. 4.47 and the double angle identity,

4,50 sin 2@ = 2-cosf ' Y1 - cos°¢f"
lead to the following:

4,51 sin 28" = 2(cos @+ %fsineg_‘)) :

2ac o gt
Jl - cosg¢ +7f cosg sin2¢+n prstn P

m
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Neglecting terms in )72(32 and expanding the square root,
4,5 sin 28' = sin 2¢ - WFaingﬁcos 2%

The identity for the sine of a sum of angles,

4,53 sin (29':—29") e sin 2;,( cos 2¢' - cos 2¢ sin 2¢

along with Eqs. 4,49 and 4.52 provide an equation for onme of
the terms appearing in Eq. 4.40:
4,54 sin 2(¢-¢') =T)Psinﬁ.

™

The c¢osine term appearing in the third component of S-d[-;

(Eq. 4.17) can be derived from the identity ©

4.5  cos 2(-3') = | 1 - sinZ 2@ -¢).

Substituting 4.54 into this equation yields:

4.,.5% cos 2{¢-¢) = Jl -)']2[92 sin‘2515.1

However since (932.5 x 1077 radians Eq. 4.5 can be written
to a very good approximation as:

4.57 cos 2@-¢4') 1

With the aid of Igs. 4.5 and 4.57 the cos 2(§-#') and the
sin 2(¢-¢') terms of the E-integral (Eq. 4.40) can be ex-
pressed in terms of the independent variable ¢. Before

attempting to evaluate the W-integral the dependent varieble
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92 must also be expressed in terms of the irderendent vari-

ables. Simple geometry applied to triangle O, Sl‘ 32 of

Fig. 4.1 indicates that:

Because "¢ P+ it is clear thatY) is a small angle. In
the typical lidar system where P;<2.5 x 107> and P, <5 x 107
rad., )< 7.5 x 10~7 red. A considerable simplification to
Eq. 4.33% can be obtained at the expense of a loss of some

accuracy by introducing the approximation:
.59 6,=7m-86,

The error introduced by this approximation will be estimated

in section 6.
4,7 Evaluation of the W-integral

aAs a first step in the evaluation of the W-imtegral,
the attenuation term of E. 4.33 can be simplified with the

small angle approximation for the secant as follows:

4,60 ~(3>E(L - KC_(SQQP + Sec_P’)
“BE(L“ 2% ) ) Q@E""L (Ef2/7_+P/Z)

e
~
™o

e
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Using values of cloud height for a high cloud (xc = 10411:)
with a large extinction coefficient (QE = 0.1 m'l) the larg-
est value of ﬁg'&'([;gﬁ— P/Z?T) likely to be encountered can be
estimated. For ESELS 25 x 10 -3 radian and ?'g(-"r < 5x 10-3

radian

2 T
R ILIg
4,63 eﬁE-xQ'(e’/Z+9/2)$ e = {+.0i5

It is therefore reasonable to introduce the following approx-

imation into Eq. 4.7%

el aioa)

.5 a seccend cter in the evaluation of the wW-integral
expressions 4.5%, 4,57 and 4,59 are used to simplify the
Stokes vector resulting from the %—integration (Eq. 4.40).
The first two components of the resulting vector are indew
pendent of both W and 95. The third component is an anti-
symmetric function of ¢ about 95 = (Q, and the W integral of
Eq. 4.3 3 is. independent of}ﬁ except for W£ which is sym-
metric in ¢ about ?5- 0. Therefore, integration over W and
¢ eliminates the third component of Eq. 4.40. Because this
entire vector is now independent of both W and 9‘5 it can Dbe
moved to the Ql-integral.

Thus if the approximate form of the extinction term
presented in Eg. #4.62 is introduced, the double scatter

integral can be reduced to the following form
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@ 2 A at ~§E(L"1X }
.63 L) = AR R cj B#) e dt Ecj(fa)smfde

™

jos;nei."é*(e,)-ae,j d,;_sL -2-dW
. Q f'

H1-cose) Wh"- ([ +cosB)
where
4,64 g'(a)-= |
ar[REr-0) R +Pl1-0)-£(5)]

L Lo w-e)P(e)+P(1;-e,‘)P(e) ~Blr-g ¥6(0)+R a,{g)]
0

The W-integral of Eq. 4.63 can be integrated by standard

techniques, which yield .
o}

2-dW L) a2 tan(@
4.65 - Lq_([ Cose)wz_,_[_z([.‘.ggsej (L‘Sin@,) tan { L n(2'
L

Applying this result to Eq. 4.63 yields the following

equation for doubly scattered power:

66 (B = c ABTO-F ”JAG( Ve SPel G(’t,f')-&t’

—
where the Stokes vector impulse tranefer function G(t,t') is

defined as follows:



4,67

For ease of reference the variables used in these two equa-

tions are redefined below

L = ¢(t=t') = total path length

<
t
A

Cs
P

=~

speed of light

time

receliver area

scattering cross section per unit volume
extinction cross section per unit veolume
{1,0,0,0) = a unit Stokes vector

Mueller matrix describing the polarizing
filter on the receiver

transmitted power

cloud base altitude

half angle divergence of the cone containing
all the transmitted energy

relative angular distribution function for
transmitted energy {(see condition 4.2)
angular deflection of the first scattering
event (Figs. 4.1 and 4.,2)

angular displacement from system axis (Figg,

4,1 & 4,2)
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¢ , see Figs. 4,1 and 4.2

', see Lg. 4.64

WQ_ ' gee Eqs. 4.34 through 4.39.

The transfer function presented in Eqs. 4.66 and 4.67
predicts both the magnitude and the polarization of the
doubly scattered component of a lidar return from a homo-
geneous cloud. This fundamental equation serves as the
basis for the remainder of this paper; in later secticns it
will be written in simplified versions for special cases and

also evaluated numerically for several c}oud models.
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5. THE DCUBLE SCATTER TRANSFER FUNCTION IN GFusCIAL Cadsd

In this section the fundamental double scatter transfer
function (Eq. #.66) is presented in simplified form for sev-
eral special cases. Of particular interest is the special
form which results when the scattering matrix element Pl(G )]
has a Gaussian angular dependence at small angles. In this
case the doubly scattered signal can be evaluated without

recourse to cumbersome numerical Iintegrations.

5.1 Lidar systems transmitting short pulses
In the limit where the pulse duration At of the trans-—
mitting laser approaches zero and when the laser pulse is

transmitted at time t = O; evaluation of the t' integral

in Eq. 4.66 yields:

a2 AN -2pd
5.1 @ () = Ej cra - -u-F G(t,0) e p

where d = (¢t - xc)/a and
the time integral of the transmitted power is identified as
the transmitted energy Eo‘ The optical pulses transmitted

8 seconds long;

by most lidar systems are on the order of 107
however, the receiver electronics on these systems usually

integrate the received signal over time period on the order
of 10"7 seconds. Because the receiver integration time is

10 times At, the time integral included in Eq. 4,66 has

little effect on the observed signal. Thus for most lidar






gysteme it is not necessary to perform the integration
included in Eq. 4.66. The results obtained from LEq. 5.1
can simply be averaged over the receiver response time to

calculate the doubly scattered return.
5.2 Unpolarized receiver -~ short transmitted pulse

The Mueller matrix gfcontained in Egs. 4.66 and 5,1
makes it possible to calculate the doubly scattered power
detected by a receiver equiped with any type of polarizing
filter. It is instructive to consider the form of EZg. 5.1
in the special case where the receiver is unpolarized. In
this case the Mueller matrix f is given by

1 O 0

o+ OO

o 1
o 0
0 0

= o O

and Eq. 5.1 can be written

5.3 B ,(t) = E; A-Cp2-G (t,0). e~

—
where GI(t,O) = the first component of the vector G(t,0)
derived from Eq. 4.67.

5.3 Linearly polarized receiver -- short transmitted pulse

[
The Mueller matrix F for a linearly polarized receiver
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arranged such that the transmission direction of the polar-
izing filter is oriented at an anglel with respect to the

polarization direction of the transmitted energy is given

by
1 cos 21 sin 2]; 0
5.4 an‘ - 1/2 cos 2]; cos® 2% cos 2]; sin 2t_, 0
sin 2[; cos 2( ain 21_: sin® 21'; 0
0 0 0 0

and the double scatter egquation becomes
2 =2
5.6 Gz(t) = }é-EO-A - c~[5 e pd . {GI(t,O) +* cos(EC)-GQ(t,O)}

—_
where GQ is the second component of the vector G(t,0)

5.4 Transmitter with small angular divergence -- short
transm.tted pulse
48 the laser beam divergence approaches zero, the angu-
lar distribution function g(|o) approaches the Dirac delta

function Hrm
5.6 ge) = 7blp)

Using this form of g, the (D—integral of the vector transfer
function {(Eq. 4.67) can be integrated directly. The integra-
ted function, which includes wﬂ (BEg. 4.34, 4.3 and 4.37)

evaluated at F= O, is independent of 95; therefore, the
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@-integral can be reduced to a multiilicstion by 2.
These integrations yield the following small beam diver-

gence form of the vector impulse transfer function
w

5.7 Gl(t,‘t,):jl:g g(e,)-tar{'{i%&—. tan (9,/2) ‘CJQ,

The function NE is evaluated at = 0 and is selected
according to the criteria listed in secticn 4 from the set

of Eqs. 4.34, 4.36 and 4.37.

5.5 Gaussian forward scattering peak -- small transcitter

divergence -- short transmitted pulse

In Appendix &4, it is shown that for some water droplet
gize distributions, the small angle forward scattering has
a nearly Gaussian angular dependence. In this case further
si .plification of the small beax divergence impulse transfer
function (Eq. 5.7) is possible. The approximate relationship
is obtained when a Gaussian diffracticn peak is introduced

into the scattering matrix as follows

5.8 P, 8) = R(D) 'axp{—e’/w’ >} 6 < T/

where Pl(O) = actual value of the scattering matrix ele-
ment Pl(e) evaluated at B =0
{®%- mean square angle of scattering for small
i .
angle scatterin Appendix A
g &Y ZwF0) (app )
(4 ao

1
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and where for 62 /2 Pl(e) is given by the actual values

of the matrix element. Jith this approximation the [irst

component of the vector E‘defined by Zg. 5.7 becomes
[
. QW'P.(O) g ke I
5.9 061* —T——-Lﬂiﬁ“eﬁ'e- “tan{ = -tan(a/,?_)}'d 8,
_8<e"7
+ aw-p.(o)ﬁal(qr—el)-e “fan |V -tch"'e*) .46
L 5 L 7. I

5]

Notice that the vector 3' contained in Eq. 5.7 has been
simplified by negiectiné the P2(61) IE(TT-QI) contribution
to the doubly scattered return. The validity of this
assumption can be verified by inspection of the matrix ele-
ments presentad in Appendix A.

In Eq. 5.9 the doubly scattered contribution is divided
into two separate terms; these terms reflect the order in
which the scattering events occurred. Doubly scattered pho-
tons contributing to the first term are scattered first
through a small forward angle and then turned back toward
the receiver by a deflection of nearly T radians. The
second term represents the contribution due to photons
which first undergo a large angle scattering and then a
small amgle event.

The diffraction peak concentrateg scattered light into
a narrow angular cone; small angle approximations may there-
fore be used to simplify Eq. 5.9. When these approximations

are applied, after substituting Eqs. 4.3, 4.7 and 4.7/ for



Wl , the following expression results

%W,P(o) P@r—e) ~07e o de
o]

/98 e
i, % -

are Bl0) | Plr-g,) SOER2 o w""’
”f_L,_w'jE;; 4vﬁ’l7%" oi

_#JQ_EEE F;(g) _JG)P,(TF-Q,) e:a""/{el?dg ﬁyv’} W

e*thr !

where 6k = the angle at which the expression for W
changes from Egq. 4.34 to 4.3g |
¢ =L py/ad
6. = the angle defined by Zg. 4.39
&:Ef'xc/d +?“ - 0
(Dr = receiver half-angle acceptance ccone
cl =(L -2xc)72£:—_10ud penetration depth
% = cloud base altitude
P1=(0) = scattering matrix element Pl(G) evaluated at
8- 0
If the mean value theorem is used to remove the aver-
age value of Pl(-n‘-el) from the integrals above, the first
two terms can be integrated by standard techniques and the
second two terms can be identified as error functions. If
this were to be an exact evaluation of the above integrals,
a different value for the average {P;{r)), should be derived
for each integral as a function of tte integration limits;

however, this average is a realatively insensitive function
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of the integration limits and can be estimated with
Eq. 3.11. With this approximation Eg. 5.10 can be reduced

to the following simple form

5.11 G

+L1 f’r <Pm>z 2—' [1 cerf [ Ol ]
<&ty .2cl4<el>‘}

=

where the error function evaluated at a point Z is given by
¢
2 -t2
5.12 erf(Z) = &= e at
c

Vi

and the approximate relationship

5.13 ;J’Y_zr__) <8* =1
T

has been introcduced (see 4, pendix 4 for a derivation of 5,13%).
The terms of =g. 5.11 are presented in the same order as
they were written in Eq. 5.10; thus the first term can be
identified as the doubly scattered contribution due to all
scattering when the first scattering involves an angular
deflection 91 in the range 0({ 6, < LLZE&C + The second gives
the contribution due to the angular rangeqpﬁgssfagﬂ'while

the third and fourth terms account for scattering with
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cp -0k .
2d —

although Iq. 5.11 contains a relatively large number of
approximations it is, because of its simplicity, perhaps
the most useful result of the present paper. 4 comparison
of the GI's calculated from 5.11 and those from the exact
form presented in Eq. 4.67 is presented in section &. 1In
the cases examined, Eq. 5.11 is shown to provide a good
approximation to the exact form.

When a lidar return is to be analyzed with the single
scatter equation, contributions tc the signal due to double
scattering may introduce substantial error. Fart of the
usefulness of Eq. 5.11 lies in the ease with which it can be
applied to estimate the magnitude of this error. Consider
for example, the lidar return observed when the system is
immersed in a hazy atwmosphere. In this case, where the cloud
base altitude X, is zero and the r.m.s. diffraction peak

scattering angle*<91> is much larger than the angular field

of view;‘QPr ig. 5.11 reduces to
5.8 G =fr KP,(’W“)}{ o
T 24 1 <ty

*5ee appendix « for examples of the scattering matrix for
nodel haze particle size distributioms. slthough the assump-
tion of a Gaussian diffracticn peak is less satisfactory

for the haze models than it is for the cloud size distribu-
tions the comparisons presented in section @ show that rea-~
gsonable estimates are possible with £g. 5.15.
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Fi
because(’..«ka2> terms in Pr /A6 ) have been assumed neglipgible

in comparison teo F?ARﬁf? . This equation can then be sub-
stituted inte 5.3 to give the doubly scattered power received
by a non-polarized receiver. If the resulting expression is
divided by the single scatter lidar equation the ratio of
double to single scattering can be estimated. This ratio

is given by

L Cr
s G f b (E)

Because the ﬁaze size distributicns tend to have little
variation in Pl(Ql) near the backscatter direction (Appendix
4) the ratio<¥ahﬂ2has been set equal to 1 in the derivation
of Tq. 5.15.

4dditional physical insight is provided by comparing
this equation to the small penetration depth approximation
forfgg/Gl developed in section 3 (Eq. 3.11), When the
cloud base altitude x, = O the penetration depth 4 = L/2,
Therefore, when it is assumed <]?0”J>5 = 1, BEg. 5.15 and

P .
Eq. 3.11 differ only by a factor ﬁ?,(f% . This factor
V{817

clearly represents the fraction of the small angle forward

scattering which is scattered out of the receiver field of
view. Notice that as the r.m.s. width of the forward scat-
tering peak {2}553 becomes larger more energy is scattered
out of the receiver field of view and the ratio(ga/gh

beccomes smaller.
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The double scatter transfer function (Zq. 4.68) from

which equation 5.15 was derived is based on the assumption
of a homogeneous scattering medium. Howewer, Eq. 5.15 is
applicable to a more general case where the haze is not
homogeneous. From propagation time considerations and the
small angle approximation it is known that one of the pair
of scatterings making up a double scatter event occurs at a
distance L/2 from the lidar. This scattering provides a
deflection of_negrly T radians. The other scattering must
produce a small deflection. Kotice that if this small angie
scattering deflects the photon by an anglef% the event must

occur within the interval between %?(l -%%—) and L/2, other-
t

wise the radial component of the photors motion will carry
it out of the receiver field of view. Examination of Eg.
5.10 along with a tabulation of the error function shows
that if all photons deflected less than 0.1843559 radians
are neglected only 20% of the power contributing to Eq. 5.15
is lost. Therefore 80% of the doubly scattered energy must

result from combinations of scattering events occuring within

- L Pr .
the interval between 7?(1 “dﬁ?ﬁ‘?? and L/2. 4s long as the
value of @ and/or —I _is not decreasing in such a way that

{<e®
jower levels make an inordinate contribution to the docubly

scattered signal, the homogeneity requirement on 5.15 applies
only to this more limited range interval.
Rough estimates of the parameters included in Eq. 5.15

will now be used to obtain estimates of the double to single
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scatter ratios. First consider the lidar return from a range
of 10 kz in a moderate haze (= 0.2 km™') with a size dis-
tribution given by the haze C model presented in appendix s.
If the receiver angular field of view 2Pr = 10_2 radians,

the double to single scatter ratioc for this case is

sas 28,2 () (02 ke H o k) (Sg,i?o- )

Qifgqg
Now consider a light fog (@= 1 kﬁs with a size distribution

given by cloud model C-1. If the same receiver is used and

the observation distance is 1 km,

5.7 /8 % (D0 km!) (i ken)- (SELOJO )
25 %

These estimates indicate that the doubly scattered con-
tribution to a lidar return cannot automatically be con-
sidered negligible even when the return does not involve

penetration intc an optically dense cloud.
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6. NUMERICAL CCMIUTATIUNAL METHCDS AND ERROR ESTIMATES FOR
THE GENERAL DOUBLL SCATTER TRANSFER FUNCTION

Lvaluation of the exact vector impulse transfer func-
tion (kq. #.67) must be performed by means of numerical in-
tegration., This section describes the integration scheme
used in the present analysis. The errors introduced by this
quadrature along with the errors due to the‘gz—approximatlon

(see section 4) are also discussed.
6.1 The numerical integration schene

In this development, values of the vector impulse trans-
fer function for double scattering were obtained with a
Simpson's rule quadrature. 4 computer propram was written
to estimate numerically the integral of an arbitrary func-
tion on a specified interval. This routine proceeds by
interval halving as follows:

i) The function is evaluated at the endpoints and the

center of the interval. An estimate of the integral

is then made with a standard 3-point Simpson's rule

gquadrature.

ii) The distance between each previous function eval-

uation is identified as & new sub-interval., The func-

tion is evaliuated at the mid-points of each of these

gub-intervals and Simpson's rule applied to each.

iii) The fractional change f between this new estimate
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of the integral,tin, and the previous estimute,ﬁQn_l, is

then calculated as follows:
fo|dn Lo
“Q ; 0.1
n

If fis smaller than a preselected convergence criterion €
the last estimateﬁgn is accepted as the value of the integral.
If f »€ the intervals are subdivided again as in step ii and
the procedure is repeated until £<€ .

The Gﬁ-integral in Eq. 4.67 is evaluated by a computer
routine of this type. This routine is nested in a similar
program element which calculates the f)—integral. Because
the (Sl—integration must be performed on a two component
vector, the quadrature discussed above was modified to accept
2 second component. In the modified version interval halving
is carried out until both components of the integrated vector
meet the convergence criterion.

Because the functions g(él) and tan (81/2) vary rapidly
for 81 near O and T the Gl-integral was subdivided into
three intervals ( O to 0.2 rad., 0.2 to 2.%4 rad., and 2.9
to M rad.). This subdivisicn substantially speeds conver-
gence of the 91 integrations. Notice that even though
tan(%?) becomes infinite at‘el = 7 the integrand is finite

because WQ approaches zero at 17,

6.2 Tests of integral convergence

The numerical gquadrature described above generates an
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approximate value Gn for the integral G(t,t') presented in

Eq. #.67. The accuracy of this quadrature depends on the
functional behavior of the integrand and the value selected
for the convergence parameter € ; thus, G(t,t‘)R:Gn(t,t',E‘).
The dependence of G on € was investigated by computing Gn
for several values of € . Figs. 6.1 and 6.2 show examples
of this dependence plotted in terms of the approximate frac-

tional quadrature errors FI and FQ, where

P €)= Gralttie) “Gaglt ¢, 0002 ) 6.2
Sz (tt) c002s)

—

and GI = first component of the vector Gn

GQ = gsecond component of the vectorka;.
Notice that FI and FQ are approximations to the fractional
error because the exact values of the wvector components are
not available and can only be estimated by applying the quad-
rature with a small € (in this case with € = 0.0025). The
tine required for evaluation of Gn en a Univac 1108 computer
is also plotted in Figs. 6.1 and ©.2. The lidar systems
parameters used in these calculations are the same as those
used for the results presented in Fig. 7.l. Fig. 6.1 assumes
a homogeneous cloud with a size distridbution given by
Deirmendjian's cloud model C-1 and a cloud base altitude of
1 kxm. In Fig. 6.2 cloud model C-4 is assumed with a 1 km,
cloud base. Both sets of calculations were performed for the

case t-t' = 7.66 x 10'6 sec. {i.e. a 120 m ¢loud penetration
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Fig. 6.1 Fractional quadrature erroys in Gy (€) and G,(€)
(Eq. 6.2) and computation time for G_(&). Ehese compita-
tions ussume: cloud model C-1, cloud”base altitude x. = 1 km,
receiver field of view 2f, = 0.004 rad., laser bteam diver-
ence 2f; = 0,002 rad. laker energy distribution given by
Eq- 6.67.,
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depth) -

The curves plotted in Figs. 6.1 and 6.2 show that it is
reasonable to assume that the fracticnal error introduced by
the guadrature is less than € . These curves alsc indicate
tat the choice of € involves a compromise between computa-
tional accuracy and the computation time. Notice that the
convergence properties are similar for cloud models C-1 and
C-4 even though the angular variation of the off-diagonal
elements P2 gnd P4 of the scattering matrix are considerably
more complex in the C-4 case., This added complexity intro-
duces only slightly slower convergence rates and smail in-
creases in computation time.

Unless otherwise noted calculations presented in the re-
mainder of this paper will assume €= 0,05 for all integration
A quadrature introduced error of less than 5% is therefore
expected in the calculated conponents of-gtt,t‘). The
results presented in Figs. 6.1 and 6.2 indicate that this

error may frequently be less than 1%.
6.% Effects of the €92-approximation

The double scatter equation was considerably simplified
by the introduction of an approximate value for the second
scattering angle 532. This approximation, contained in Eq.

4,62, sets the angle Y}=0O . The actual value of'q for any
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pair of scattering events is given by Eq. 4.49 and falls in

the range:

o< ¢ APy 6.3

The approximate walues off92 derived from Eq. 4.62 consis-.
tently underestimate the actual values off92.

In order to estimete the error introduced by this
approximation, the vector impulse transfer function (Eg. 4.567)
was evaluated twice; first using Eq. 4.62 to predict492 and
then with592 given by the following equivalent approxima-

tion*
O, T+ O +Pr+P

or @2*-:"”'” i c ,n—_e\-'-Pr +PL_>/|T’ .4

These two evaluations were used to calculate the percentage

errors Hy and HQ, where Hy and K are defined by

G _ /
HT.Q = o LK 6.5
) /
SRR
Phe subscripts 1 und ., refer to the firet and seccnd com-

e —
ponents of the vector G(t,t') and the primed G refers to

results obtained using Eg. 6.4 Tather than 4.52.
Fercentage errors calculated from Eq. 6.5 are presented

for doubly scattered lidar returns from three different cloud

*In Lg. 4.62 ) was set to its minimum possible value Y)=<,
while in Eq. 6.4 Y] is set to its maximum possible value

where Y= P'+PL .
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models in Figs. 6.3, 6.4 and 6.5. These calculations assume

an angular distribution of transmitted energy given by
- 2

The following wvalues for the half-angle transmitted beam

divergence EJL and the cloud base altitude X, were assumed

1l mr

CL

x

6.7
c 1000 m.

The range”of-uncerfainty in GI and GQ due to the 92-
approximation can be estimated Prom these figures. HI and HQ
are calculated with Y) set to its extreme values and are
therefore likely to overestimate the actual errors.

Notice that the HQ values presented for cloud C-1 and
haze M are smaller than the estimated gquadrature errors;
therefore the erractic behavior of these quantities is
probably due to integration errors.

Errors introduced by thefgg—approximation have the
strongest effect in the calculation of the cross-polarized
doubly scattered return with Zg. 5.5. This determinagtion
is particularly sensitive to ﬁhese errors because it involves
a difference between the components Gy and G%. The examples
presented in Figs. 6.3, 6.4 and 6.5 indicate that the effect

i to overestimate the cross-polarized return.
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7. CALCULATED EX.MiLuS CF G(t,t')

In this section the numerical quadrature described in

section 6.1 is applied to Eq. 4.67. This evaluation yields
the Stokes vector impulse transfer function EEt,t'). The
dependence ofqa on three parameters will be considered:
1) the receiver angular field of view, 2) the particle size
distribution in the cloud, 3) the cloud base altitude. The
calculated values of'a will also be compared to the approx=-
imete results of sections 3 and 5.

The double scattering calculations of this paper could
be presented directly in terms of the doubly scattered power
or the ratic of double to single scattering; however, these
more intuitive quantities are less flexible in application
and contain less information than the vector transfer func-
tion G(t,t').

-

(nly one evaluation of G is necessary for a given sys-—
tem geometry, cloud base altitude and particle size distri-
bution. Then with the aid of Eq. #.66, or one of its spe-
cial case forms, the doubly scattered power can easily be
obtained for any combination of transmitted energy, scat-
tering cross section® and receiver polarizing filter.

For all examples presented in this section, the trans-

*Notice that for a fixed size distribution the scattering

cross section is directly proportional to the number density
of cloud droplets.
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mitter is assumed to emit linearly polarized light, and all
of the transmitted energy is assumed to be contained in a

cone with an angular divergence EPL = 2 milliradians. The
radiation pattern is axially symmetric, but varies with the

divergence angle P as follows

3(P)OC e;c‘;v‘:-@/@”dﬂzl 5.1

It is useful to compare the results obtained from iq.
4,67 with the approximation presented in section 3. These
comparisons requi&e an éxpression corresponding to-ﬁxfor the
approximate case. If the single scattering term of &q. 3.8
is substituted into Eg. 3.10 and the order of the scatliering
N is taken equal to 2, an approximate double scattering
equation results. A term by term comparison of this equa-
tion with #4.66 produces an expression which must represent
GI for the approximate solution:
o 1 <p T2, d
I~ 72 " v (xc+d)2

where the penetration depth 4 is given by:

ds= E&E%Ell - Xq» a3

Notice that if a photon is transmitted at time t' and re-

ceived at time t, then 24 is the distance the photon travels

inside the cloud. The distance d can alsc be interpreted
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as the penetration depth of a singly scattered phtcn.

The approximate solution presented in section 3 is
valid onlv umtil photons scattered in the diffraction pesk
begin to escape from the receiver field of view. The pene-
tration depth dc at which approximation 7.2 is expected
to break down can be obtained from the condition on the
receiver field of view introduced ir Eq. 3.16. This depth

is

a4 = XC(PI‘ '?L) 7.4
c fN-—li-ed *
where X, = cloud base altitude
Py = half-angle receiver field of view

N = order of scattering

angular width of the diffraction peak.

half-angle transmitted beam divergence

fL

7.1 The angular field of view dependence

Unlike the case of the singly scattered lidar return
where increasing the receiver acceptance angle beyond the
transmitted beam divergence does not increase the received
signal, the doubly scattered power continues to increase as
the receiver acceptance angle is increased. The difference
lies in how large a cloud volume is illuminated. In the
double scattering case photons can be scattered out of the

primary beam to illuninate the surrounding cloud, while
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for single scattering only the directly illuminated volume
can contribute to the observed return. This dependence is
illustrated in Fig. 7.1 where the values of G(d) increase
with penetration depth. A particle size distribution
given by cloud model C-1 (see Appendix A) and a cloud

base altitude of 1 km are assumed.
The approximate expression pregented in Eq. 7.2 is

also plotted in Fig. 7.1. according %o Eq. 7.4 this approx-
imation should be valid up to a penetration depth dd for the
values of half-angle receiver field of vieW'Pr congidered

in Fig. 7.1 the values of dc are

Pr rad. dc 7.5
1 x 1070 0
2 x 10_5 29 m
3 x 1077 57 m
5 x 1072 115 m

where Qd = 33 x 10~? padians.
This walue of Gd is the r.m.s. angular width of the d4if-
fraction peak. It was calculated for cloud model C-1 with

the approximation presented in Appendix A.

Notice that the aspproximate sclutions based on " he
simple arguments presented in section 3 provide a good esti-
mate of GI throughout their predicted range of validity.
This agreement provides evidence that, at least for the GI
component, the derivation of section 4 is without major

error and that the ccmputer evaluation of &g. 4.67 is pro-
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ceeding correctly. In addition, this comparisbn indicates
that the primary assumption used in the approximation must
be valid, i.e. the dominant contribution to the doubly scat-
tered return is produced by photons which are directed
towards the receiver through a combination of a small anglie
diffraction peak scattering event and a large angle deflec-
tion which turns the photon back towards the receiver”.
These scatterings may occur in any order with either the
small or the large angle scattering happening first.

Eq. 7.2 is derived from Eq. 3.10, thus agreement of
7.2 with the "exact" wvalues of GI indicates that Zg. 3.10
is likely to provide reasonable estimates of third and
higher order scattering as well. Of course the range of
validity of these approximations must decrease rapidly with
scattering order as predicted by Eg. 7.4.

In section 5.4 a special case solution, which assumed
& small transmitted beam divergence and a Gaussian diffrac-
tion peak, was derived for GI. In Fig. 7.2 this sclution
is compared to the values of GI obtained by numerical jnte-
gration of Eg. 4.67. The quadrature solutions presented in
Pig. 7.2 are identical to those of Fig. 7.1 except that, in
this figure, they are presented for a larger range of pene-

tration depths. The special case solutions are derived
< 7SS
using values of ﬁ‘(g’i—z‘ and ¥X6*? derived from Eq. 3.1l and

*DThis conclusion has also been verified by examining the
relative contribution made by various angular segments to
the 6, -integral of Eq. 4.67.
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Appendix A respectively. For cloud model C=1 these values

are

<R % - 0.035
——

\!<_6i_> = 0,034,

The close agreement observed between the special case

7.6

solution for GI and the values obtained directly for £q. 4.67
illustrates the value of Eq. 5.11 in estimating the doubly
scattered contribution to a lidar return.

Also plotted in Fig. 7.2 is the deep penetration approx-
imation to GI presented in kq. 5.1#, 4ccording to the dis-
cussion of section 5.4 this equation should be wvalid for
the case Pr<< J<E9l> and for penetration depths greater
than d,, where

drn': X Py
(OIEN<BT S —Pu ) 7.7

Notice that, as expected, the approximation improves as the

Pr {<&*> ratio decreases.

7.2 BSize distribution dependence

Fig. 7.3 presents the vector components GI and G% for
the C-1, C~3%, C~4 and haze M particle size distributions
intreduced in Appendix A. Approximate values of GI calcu=-

1ated for the special case solution for a Gaussian diffrac-
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tion peak (Eq. 5.11) are also plotted in #his figure. A

cloud base altitude of 1 km and a receiver field of view
2P, = & x 10~2 pradians are assumed for all calculations
presented here.

The Gaussian diffractiocn peak approximation to GI

(Eq. 5.11) is a function of the ratioEt4?53§: Except for
the scaling of the entire double scatter profile by the
éﬁé;gZ? term, this expression is otherwise independent of
particle size dependent parameters. Changes in the par-
ticle size distribution which affect the width of the
diffraction peak can therefore be expected to affect the
shape of the GI(d) curve in a manner similar to changes in
the receiver field of view. This diffraction peak width
effect is clearly evident in Fig. 7.3. The wider the diff-
raction peak the sooner the GI(d) curve flattens out. This
flattening occurs because some of the photons scattered into
the diffracticn peak propagate ocut of the receiver field of
view before they undergo a second scattering. Lither widen-
ing the receiver field of view of narrowing the diffraction
peak, therefore, effects a similar reduction in this loss
of photons.

The strong dependence of GI on the ratio 9?4(92> opens
the possibility of remotely determining Ja§;§1 with lidar
measurements of double scattering. Because the r.m.s.
diffraction peak scattering angle J<Gl>' is strongly depen-
dent on particle sizes, such measurements could yield infor-

mation on the scatbering particles. Before such particle
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size information can be acquired from lidar measurements,

however, it is likely that the present theory will require
extension to include the effects of higher order scattering

and spatial inhomogeneities in the clouds.
7.3 (loud base altitude dependence

Fig. 7.4 presents the corponents of-ahfor several
values of the cloud base altitude. & water droplet size
distribution given by model C-1 was assumed along with a
receiver acceptance angle given by 2?& = 4 mr. The simple
approximation developed in section 3 is also plotted in
this figure. OCnce again, in its range of applicabllity
the small penetration depth approximation (Eq. 7.2) provides
a good fit to the results obtained by numerical integratiocn
of bLg. 4.67. The values of the maximum penetration depth d,
for which the approximation is valid can be obtained from

kq. 7.4+ These values are

dc(meters) xc(meters)

16 500

33 1000

49 1500 7.8
66 2000

The lower the cloud base altitude the more quickly the
exact calculations depart from the approximate solutions.

For a given er_the diameter of the receiver acceptance cone
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increases with altitude; theretfore, at low altitudes a pho-
ton deflected by a small angle propagates out of the recei-
ver field of view more quickly.

The special case solution for a Gaussian diffraction
peak, although not plotted here, also yields a good fit to

the values presented in Fig. 74,
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8. CUMEARISONS WITH YREVICUS Cal:SULATICRNS

8.1 Liou and Schotland

Tn secticn % calculations of the doubly scattered
return performed by Liou and Schotland (1971) were compart
to an approximate solution. This comparisen showed a dis-
crepancy between‘their exact solution and the approximation.
In order to investigate this further zq. £.5 was used %o
derive the expected doubly scattered lidar return for the
system geometry and cloud model used by Liou and Schotland.
These values were then divided by the expected singly scat-
tered return to produce the same double tc single scatter
ratios published by L & 5. These results are presented in
Fig. 8.1. Cloud model C-1 is assumed for these calculations™
the other system and cloud parameters used are:

x, = 1000 n

C

Bg = 0-0168 z L

(Jr - 5x 10—3 r B.l

= 5 x 10"3 v
s(f(:I; oc o= (E/4x16Y)"

*Cloud model C-1 in the notation used in this development

is identical to cloud model C-4 in the identificalbion schene
used by Liou and Schotland. The cloud models used in the
present development correspond to those introduced by
Deirmendjian (1969).
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Fig. 8.1 A comparison between the double to single scatter
ratios obtained in the present analysis and those obtained
by Liou and Schotland (1971). Curves with data points are
the present results. The small penetration depth approx-
imation (Eq. 3.10) is also shown.
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The approximate solution developed in section 3 is also

plotted in Fig. 8.1. For the penetrat.on depths cons idered
here the total docuble scattering culculated from Zq. 5.5
and the approximate solution show excellent agreement;
however, the total double scatter calculated by Liou and
Schotland for the same cloud model and system geometry is
more than a factor of ten smaller. The computed ¢ross
polarized scattered returns also exhibit substantial dis-
agreement. Liou and Schotland's results are more than a fac-
tor of five smaller thaﬁ the values calculated from Eq. 5.5.
Liou and Schotland also calculate a derolarization ratio

2 which is defined as follows:

O = Qz,¢ 8.2
G + @y

where Q = doubly scattered power with rolarization per-
2,1

pendicular to the transmitted polarization
G;” = doubly scattered power with polarization
parallel to the transmitted polarization
G, = singly scattered power.
The double to single scatter ratios presented in Fig. 8.1
were used to derive values of the depolarization ratio. &
comparison of these results and the values published by

Liou and Schotland are contained in Fig. 8.2. The depolari-

zation rabtios based on the present double scatter analysis
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are about four times as large as the Liou and Schotland

results. Furthermore, since the aprproximate solutions
developed in section 3 indicate that third and higher order
gcattering is not negligible, actual measurements should
contain additional depolarization due to higher order scat-

tering.

8.2 Plass and Kattawar

In this sebtibn doubly scattered returns calculated
from £3. 5.3 are compared to the results obtained by Flass
and Kattawar with a Monte Carlo procedure, This comparison
is restricted to a single case involving a rather unrealis-
tic cloud comprised of particles with a haze C size distri-
bution. Computation of the doubly scattered return for the
wore realistic nimbostratus model presented by Flass and
Kattawar would have inveclved the time consuming computer
computation of Mie scattering intensities to derive the
scattering matrix for this size distribution.

Fig. 8.3 presents a comperisen of the multiply scat-
tered return calculated by Flass and Eattawar and the
double scattering derived from Eq. 5.3, both solutions
assume a haeze C particle size distribution. The other

cloud and system parameters used are:
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Fig, 8.3 The ratio of all multiple scattering to single
scattering derived with a Monte Carlo gimulation by Flass
and Kattawar (1971) and the patio of double to single scat-
tering derived from the present analysis for the same sys-

tem and cloud parameters.
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x, = 1000 @
_ -1

BS = 0.0l m

Pr = 0.005 r 8.5

1, = 0.001 r

g(e) is independent of P
The Monte Carlo computations include all orders of scatter-
ing, therefore, if both computations are correct, the dif=-
ference between the lionte Carlo results and the douvle scat-
ter values should represent the contribution due to third
and higher order scattering. If this difference is taken
for the values presented in Fig. 6.3, unreasonable results
are obtained for penetration depths less than 35 m. In this
region the double scatter calculations yield larger returns
than those computed for sll orders of scattering., This
author helieves that the discrepanc¢y results from statis-
tical errors in the lonte Carlo determination of multiple
scattering. An examination of data points presented by
Plass and Kattawar (1971) indicates scatter about a smooth
curve which could, at a penetration depth of 25 m, easily
result in as much as a factor of two error in the multiple
to single scatter ratio. The multirly scattered return is
derived by subtracting the singly scattered contribution
from the total return; therefore, the errcr is greatest
where the difference is small. It does not appear that the

large difference betwee:. the double scatter and the total
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scatter which appears beyond penetration depths of 50 m can
result from statistical errors; this difference may there-

fore represent third and higher order scattering.
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9. SUMMARY

Section 2 shows what appears to be a substantial dis-
crepancy between the multiply scattered lidar returns calicu-
lated by Liou and Schotland (1971) and those calculated by
Plass and Kattawar (1971).

Section 3 develops a small angle approximation for the
Nt order contribution to a lidar return from a cloud. This
approximation is valid for small penetration depths into &
cleud consisting of particles which scatter light strongly
into a narrow diffracticn peak. Within its range of appli-
cability this approximation yields multiply scattered re-
turns which appear consistant with results published by
Plass and Kattawar, but which are in clear disagreement with
values presented by Liou and Schotland.

In section 4 a Stokes vector impulse transfer function
is derived for double scattering., This transfer function
can be used to¢ calculate the magnitude and polarization
of the doubly scattered lidar return from a homogeneocus
¢loud of spherical particles. The effects due to cloud base
altitude, finite angular spread of the transmitted pulse,
non-uniform distribution of the transmitted energy with
time and angle in the transmitted pulse, finite receiver
field of view, particle size distribution in the ¢loud and a
polarizing filter on the receiver are included in this deri-

vation.
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In section 5 the vector transfer functicn for double
scattering develcped in the previocus section is presented
in simplified form for a number of srecial cases. These
cases include: 1) lidar system transmitting siiort pulses
(Eq. 5.1), 2) systems with an unpolarized receiver (Eg. 5.3),
%) systems using a linearly polarized receiver (Eq. 5.5),
4y systems with a small transmitted beam divergence (Eq. 5.7),
5) the case of a transmitter with small beam divergence
illuminzating a ploud with a Gausgsian angular dependence of
the forward scatterin: peak (Eq. 5.11), and &) the same case
as 5 except that the system is immersed in the cloud and the
receiver field of view is small compared to the r.m.s. width
of the forward scattering peair (Eq. 5.14% and 5.15), Equation
5.11 is the most important result of this section. When-
ever the forward secattering peak can be approximated by a
Gaussian, the doubly scattered return can be obtained with-
out recourse to cumbersome numerical integraticos.

Section © considers the details of obtaining values
for the transfer function derived in section 4. The
numerical integra?ion scheme utilized is described and the
errors implicit jJ%ste are investigated. The error intro-
duced by an approximation to the second scattering angle
made in section 4 is also investigated. The magnitudes
of these errors depend on both the system geometry and the

particle size distribution. In the worst case discussed,
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cloud model C-1 and and 5 pr half-angle receiver field of
view, an upper limic for the combined errors is APpProxXi-

mately 15% of the calculated return. This is a very con-
servative estimate and even in this worst case the actual
error is likely to be less than 5.

In section 7 examprles of the Stokes vector impulse
transfer function are presented. These results, which are
calculated from the equations derived in section 4, are
obtained for several size distributions, cloud base alti-
tudes and values of the receiver angular field of view.
These values of the vector impulse transfer function are
compured to an approximate equation based on the small angle
multiple scatter relationship developed in secticn 3. With-
in the range of penetraticn depths where the assumptions
used in the approximation are valid the approximate values
are in good agreement with the with the exact calculations.
This apreement slong with an examination of parttial results
during numerical integration of the equation for the vector
impulse transfer function indicates that the doubly scat-
tered lidar return from a clcud is dominated by photons
returned to the receiver through a combination of & small
angle deflection in the diffraction peak and a large angle
scattering near T radians. Significant returns are pro-
duced by both the scattering combination where the small

angle event occurs before the large angle event and by the
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reverse combination. Results based on kg, 5.11, the special
case solution for a Gaussian diffraction peak, are compared
to values obtained through numerical quadrature, This
comparison shows good agreement between Eq. 5.11 arnd the
exact solutions.

I section 8 the present doubly scattered lidar return
calculations are compared to the results published by Liou
and Schotland (1971) and Plass and Kattawar (1971). The
total doubly scattered power resulting from the present
analysis was found to be more than a factor of ten larger
than vmlues presented by Liou and Schotland; the cross
polarized doubly scattered return was approximately a fac-
tor of four larger than their values. when these results
were combined with the singly scattered return to calculate
the ratioc of the cross polarized return to the return with
polarization parallel to the transmitted rolarization, this
ratio was alsc approximately a factor of four larger than
that derived by Liou and Schotland,

Flass and Kattawar do not separate the second order
scattering from the other orders of multiple scattering; it
is therefore necessary to compare the present results to

their determination of all multiple scattering. At very
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small penetration depths the present dcubly scattered re-—
turns were shown tc be larger than the rlass and XKattawar
estimate of total multiple scattering. This discrepuncy,
however, appears to be within the statistical error bounds
of the Monte Carlo determingtion. st larger penetration
depths the lonte Carlc results are considerably larger than
the double scatter results; this is consistent with the
results of section % where it was ccncluded that third and
higher order scattering produced sigrnificant contributions

to the total 1idaf return received from a cloud.
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10. CONCLUSICNS

The most importsant conclusion of this study is that
lidar returns from terrestrial water clouds are likely to
contain substantial contributions due to multinle scattering.
For the most frequently used lidar system geometries and
most cloud conpositions the single scatter lidar equation
is not adequate to describe the return signals.

‘he doubly scattered lidar return is strongly dependent
on the ratio of the receiver acceptance angle to the angular
width of the fbrﬁard scéttering peak caused b: light dif-
fracted asround the cloud droplets. The return increases as
this ratio is increased until all of the diffracted light is
contained in the receiver field c¢f view. Purther increases
produce relatively small changes in the doubly scattered
return., When the difrraction peakx is within the receiver
field of view the doully scattered signal becomes comparable
to the singly scattered return at an optical thickness equal
to one.

4 simple physical model (Eq. 3.10) which
estimates the doubly scattered return at smali: penetration
depths, indicates that third and higher order contributions
to a lidar return from a cloud may also be significant.

This conclusion is supported by subtracting the present
doubly scattered estimates from the Monte Carlo determina-

tion of all multiple scattering made by Flass and Kattawar
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(1971); this difference is not zero, thus indicating the
presence of higher order scattering,

The doubly scattered return is partially depolarized;
for the cloud models considered in this study 20 to 30 per-
cent of the doubly scattered signal was polarized in a direc-
tion perpendicular to the transmitted polarization. This
depolarization along with the depolarization expected due
to third and higher order scattering exists even though the
scattering particles are perfectly srherical. Thus if lidar
neasurements are used to infer the presence of ice in a cloud
through the depolarizaticn of the singly scattered return
caused by non-spherical crystals it will be necessary to
distinguish between the dejolarization due tc particle
asymmetries and depolarization due to multiple scattering.

Because the doubly scattered lidar return is strongly
dependent on the ratio of receiver acceptance angle to the
angular width of the scattering diffraction peak, it may be
possible to determine the width of the diffractiocn peak
remotely with lidar measurements. The diffraction peak is

sensitive to particle size; +%hus, if the effects of cloud

inhomogeneities and higher order scattering can be properly
computed, double scatter measurements may allow remote

determination of particle size information.
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APTENDIX A, MNMODEL SCATTERING MATRICLES

In problems concerning the scattering of polarized
light it 1s convenient to represent the intensity and polar-~
ization of the light by means of a Stokes vector*. This
four component vector provides a complete description of an
incoherent beam of light. When an arbitrarily polarized
elecromagnetic wave is scattered by particles, both the in-
coming and the outgoing wave can be represented in Stokes
vector form. The transformation of the Stokes vector by
the scattering can be represented in terms of a 4 x 4 matrix
known as the Mueller matrix. The elements of this matrix
are functions of wavelength, size of the scattering particles,
complex index of refraction of the particles and shape of the
particles. Fortunately the small droplets which coupose
terrestrial water clouds are both spherical and homogeneocus;
for this special case the elements of the lMueller matrix
can be derived with the electromagnetic scuattering theory
develored by Mie.

The multiple scattering calculatioms presented in this

paper use lhe scattering matrix elements derived from Mie

*s discussion of the Stokes vector representation of light
may be found in Shurcliff (1962)}. The application of the
Stokes vector and the associated Mueller matrix to electro-
magnetic scattering problems is discussed by a number of
authore including Chandrasekhar (1960), Deirmendjian (1969),
Kerker (1969), Perrin (1942) and van de Hulst (1957).
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theory by Deirmendjian {1969). Because Deirmendjian employs

a modified form of the Stokes vector, it was first necessary
to transform his matrix elements for use with the present
Stokes vector form.

The standard I,3,U,V form of the Stokes vector can be
obtained from the modified Iﬂ’Ir’U’V form with the follow-

ing transformation

I Iy
< Iy
gl = By A.l
v v
where 1 1 6 0O
1-1 ¢ ©
B =
O 0 1 ¢
O 0o 0 1/.

Eq. A.1l can be used to show that any matrix !N expressed in

the Iﬂ,Ir,U,V system can be trausformed to a matrix M' in the

I,4,U,V systen with the simularity transform

M = BM B 4.2
This transformation can be applied to the scattering matrix
defined by Deirmendjian. If the elements of his matrix are
represented by lower case "p," the scattering matrix "P,"
with elements capital "Pi,“ used in the present study is

given by

"

s

e

) . AI3
P, P, O O P1*Px PyPp O O ~
oo P, P, 0 0O . P1=Pp PtPn. O O
37 = =
0 0 P, B, o O Pz Py
0o 0 -P, P

z 0 0 -py P

L

At
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Deirmendjian calculates the matrix elements for several

particle size distributions and for a number of wavelengths
of light, DBecause the ruby laser commonly used as a lidar
transmitter emits at a wavelength of 0.6943 microns,
Deirmendjians's 0.7 micron matrix elements are used exclu-
sively in this paper.

The particle size distributions considered are of the

modified gamma distribution type and are defined as feollows

‘n(r)ua,(rusji-exp{}b(r_g)a} Ak

The parameters d,ﬁ,s,a and b used in Deirmendjian's calcu-
lations are given in Table A.l and
n(r) = number of particles per unit radius per
unit voiume

r = perticle radius (microns)

TABLE A.1

Size distribution parameters

Distributicn type a o 5 b 8
Haze M 5.3333 x 10 1 % 8.9443 0
C=1 2.37%0 6 1 3/2 o

C-3 5.5556 8 3 /3 0

Ctt 5.5556 8 3 1/3 2
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In addition to the matrix elements for these distributions

where the number of particles varies smoothly with size,
the scattering matrix elements for tne discontinuous haze ¢
model are used. This size distridbution which approximates
the Junge type size distributions frequently observed in

continental hazes is defined by

an(r) = 0 r < 0,03 microns
n{r) = 1 0,03 < r < 0.1 microns 4.5
= ].O"'{'Lr"'4 0.1 £ r microns.

n(r)
The model purticle size distributions presented above
are illustrated in Fig. A.l. The plotted distributions are
normalized such that, n(rc) = 1 where r_ is the mode radius,
This normalization is possible because the matrix elements

are independent of the total number cf scatterins particles

and depend only on the relative numbers in each size
interval.

The cumulus cloud model C=1 has been shown (Liou and
schotland, 1971) to nrovide an anproximate fit te the
particle size distributions in fair weather cumulus clouds
measured by Diem (1948) and Battan and Reitan (1957).

For the particle size distributions rresented in Fiy.
#i,1 Deirmendjian's phase matrix elements have been trans-
formed to the I,4,U,V form with Eq. A.3. The resulting
matrix elements are illustrated in Figs. 4.2, 3, 4, 5, and 6,

Lotice that for the cloud models the wmatrix element P1

stows a characteristic strong peaking for small angle
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Fig. A.2 Scattering matrix elements for haze model €.
Note that negative terms, indicated in key, are reflected

about the abscissa.
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Fig. A.3 Bcattering matrix elements for haze model M.
(Note that negative terms, indicated in key, are reflected
about the absc isisa, .
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forward scattering. This enhancement is produced by &g?-
fraction effects and is commonly referred to as the dif-
fraction peak. It is useful to exanine this feature of the
scattering matrix carefully because the multiply scattered
lidar return is strongly dependent on both its intensity
and angular width.,

Weinman (1968) has suggested that the diffraction peak
might be approximated with a Gaussian function of the scat-
tering an;le. Because the forward scattering peak is pri-
marily a diffracﬁinﬁ effect, Babinet's principle* can be
used to guess that approximately one-half of the energy
scattered by the droplets is conbtained under this peak.
This fact suggests a way to select a Gaussian approximation
to the diffraction peak: first the amplitude is chosen such
that it is equal tc the value of Pl(e) at zero scattering

angle.

~HZ 2z
P1(©) = Pl(o) e /<e > A.6

then <82%> is selected from the requirement that half the

energy be under the diffraction peak as follows

*Babinet's princinle states that the diffraction pattern
due to an opague screen is the same for the screen and its
compliment. In the cemplimentary screen all of the origi-
nally opaque areas are transparent, and all the originally
transparent areas are opaque. See Jackson (1952) for more
discussion of this principle.
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solvin- for <®%>yields
AN 4T
<e*> = 2'?1‘) ﬁ(ﬁﬂ) A.B

Because at small scattering angles, diffracticn by a circular

disk is propor}:!:ional to the Bessel function expression
B P(®
j!(c‘mg““{ )‘ , it can easily be shown that %—9‘—(—)-:0 at &= 0.

Therefore the above Gaugsian yields beth the exact magnitude

and slope of the matrix element Pl(e) at B= 0. In Fig.
4.7 the above Gaussian approximation is compared to the

diffraction peaks derived by Deirmendjian from lie theory.
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Fig. 4.7 A comparison of P,.(9)/47 (solid lines) for small
angle scattering with the g&mma function approximation to
the diffraction peak (Eq. A.6) (dashed lines). The values
of Pl(e)/4ﬂ‘are the same as those presented in Figs. A.2-A.6.
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The Stokes vector components describing a beam of
light can be obtained from measurements of the irrsadiance
transmitted through polarizing filters as follows:

I =dlgge +Joe

Q= Jgoo= Q_Q,Oo

U = &450' &5150

v=dpe -dgc
where: &m= irradiahce tr;.m.smitted throuzh an ideal linear
polarizing filter placed perpendicular to the incident beam
with its transmitter axis rotated sbout the beam by an
angle O with respect to an arbitrary reference direction.

R\

circular polarizing filter.

RC "™ jrradiance transmitted through an ideal right

éQLC = irradiance transmitted through an ideal left

circular polarizing filter.
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