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ABSTRACT

An approximate model for lidar multiple scattering has been extend to compute lidar returns when the cloud
particle sizes are described by log-normal, gamma or exponential distribution functions. This paper presents
examples computed for log-normal distributions. The work was motivated by ongoing efforts to remotely measure
particle sizes in cirrus clouds which often contain a very wide range of particles sizes.

BACKGROUND

Multiple scattering causes the lidar return signal from clouds to increase with increasing receiver field of view.
Calculations show that variation is strongly dependent on both the vertical variation of the scattering cross
section and the width of the forward diffraction peak in the scattering phase function. The diffraction peak
width is directly related to particle size. Thus, multiply scattered lidar returns can be used to determine the
size of cloud particles. High Spectral Resolution (HSRL) and Raman lidars are particularly suited for this task
because they provide direct measurements of the scattering cross section profile. The HSRL can also separately
measure photons which have been backscattered by molecules while having undergone one or more forward
scattering events on cloud particles. This isolates the effects of diffraction peak variations from variations in the
near backscatter part of the phase function.

The recovery of particle size information requires a model of multiply scattered lidar returns. This can
be accomplished with an equation based on the assumption that the diffraction peak can be represented as a
Gaussian function of scattering angle (Eloranta, 1998). Cirrus clouds often contain particles with a very wide
range of sizes. In this case, the Gaussian approximation may not provide a good approximation to the forward
scattering peak. A new model which explicitly considers the width the particle size distribution is described.

A SUM OF GAUSSIAN DESCRIPTION OF THE DIFFRACTION PEAK

Following an approach similar to that used by Weinman(1976), the diffraction peak is represented with a sum
of Gaussian. Assume that different portions of the scattering cross section are associated with different values
of the Gaussian angular width, θs. In this case the forward diffraction peak can be expressed as a function of
scattering angle, θ:
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where θs has been written as a function of particle size, r, and where the scattering cross section β is:
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Where the mean-square scattering angle is defined in terms of particle radius and the lidar wavelength, λ as:
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When the scattering phase function is known, dβ(r,z)
dr can be selected such that eq. 1 provides the best fit

to the phase function. However, when multiple scattering measurements are used to remotely sense particles
sizes, the phase function is not known and it is desirable to express the diffraction peak in terms of particle size
distribution parameters.

Log-normal distribution

The log-normal size distribution can be specified with just three parameters: 1) the total number of particles, 2)
the effective radius, and 3) the width of the distribution. Consider a log-normal distribution, n(r, z), of particle
radius, r, which varies as a function of altitude, z, the particle size distribution can be written:
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When the particle size distribution, n(r) is known and the efficiency factor, Q(r, z),can be computed, the
scattering cross section β can be computed :

β(z) =
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Thus:
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dr

= πr2Q(r, z)n(r, z) (6)

In cirrus clouds, particles are typically large compared to the lidar wavelength such that Q(z) ≈ 2:
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The parameter α can be written in terms of the effective radius, reff = <r3>
<r2> as:

α(z) = reff (z)exp(−2.5γ(z)2)

and the parameter a can be written in terms of β as:

a(z) =
β(z)

2πreff (z)2
exp(3γ(z)2) (8)



With dβ
dr expressed in terms of β(z), reff , and γ(z) the integral

∫∞
0

dβ
dr dr can substituted for β each time

it appears in the multiple scattering equation (eq 11 Eloranta, 1998). An additional integration must then
be performed over particle size for each order of scattering. The resulting equation allows computation of the
multiply scattered lidar return when vertical profiles of β(z), reff (z) and γ(z) are provided.
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Figure 1. Log-normal size distributions of spheres with an effective radius of 75 microns and distribution width
parameters(γ=0.001, 0.5, and 1.0). The relative number density is plotted in the left-hand panel and the particle
area-weighted distribution on the right.

COMPARISONS WITH DIFFRACTION THEORY

Substituting equation 7 into equation 1 yields an expression for the diffraction peak phase function in terms of
the effective radius and the width of the log normal size distribution. To illustrate the effect of the distribution
width on the multiply scattered lidar return, we consider particle size distributions with three different widths
and an effective radius of 75 microns. The left panel of figure 1 shows the relative number densities. The right
panel shows the area-weighted size distributions in order to better illustrate the influence of particles on the
scattering properties of the cloud.

Figure 2 compares the diffraction peaks in the scattering phase function derived from the sum of Gaussian
approximation with those computed directly from the diffraction theory for circular apertures. Also shown are
those computed with a single Gaussian using the effective radius in equation three to determine the angular width
of the Gaussian. In this case and in the sum of Gaussian case the energy in the forward peak is constrained to
be 1/2 of the total scattered energy. This forces the approximation to match the area required by diffraction
theory. Increasing the width of the particle size distribution increases both small and large angle scattering at
the expense of mid-range angle scattering. Comparisons of the phase functions(upper panel of fig 2) show very
good fits between diffraction theory and the sum of Gaussian approximation. When the phase functions are
weighted by θ2 (to better represent the scattered energy) differences appear. As the width of the distribution
increases, the diffraction rings which appear in the for the narrowest distribution average disappear. The sum of
Gaussian model always matches the value for direct forward scatter. However, it over predicts at intermediate
angles, and under predicts at large angles. This occurs because the Airy function describing diffraction provides
more energy in at large angles than do the Gaussian making up the sum.

The influence of the log-normal distribution width on multiple scattering is shown in figure 3. As shown in
figure 2 broadening the distribution increases the number of photons scattered at both small and large angles
with a compensating reduction of the number of photons scattered at intermediate angles. The 2.2 mr FOV case
shows marked reduction of signal with increased distribution width cause by loss of photons in the large angle
tail of the angular distribution. In this case, changes in the small and intermediate angle portions of the angular
distribution have no influence, because all of these photons remain within the receiver FOV. In contrast, the
0.11 mr case shows relatively little change with distribution width. This occurs because fewer photons are lost
from the middle part of the angular distribution and the larger number of photons in the small angle part of the
distribution compensate for the loses from the large angle part of the distribution.
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Figure 2. Phase functions for log-normal distributions of spheres with reff = 75µ (top). Diffraction peaks are
plotted for log-normal width parameters of: γ=0.001, 0.5, and 1.0. Computations from diffraction theory are
shown as a solid-line while the sum of Gaussian results are shown as a bold lines and the simple Gaussian result
as a dashed lines. The bottom panel plots P (θ) · θ2/4π to better reflect the scattered energy.
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Figure 3. The ratio of multiply to singly scatter lidar returns as a function of altitude computed for log-normal
distributions of particle size and receiver fields-of-view of: 2.2 mr (left panel), 0.963mr (center) and, 0.11mr
(right). An reff of 75 microns was used for all computations. Results γ = 0.001 (bold), γ =0.5 (medium),
γ =1.0 (light) are shown. The scale is expanded by a factor of 10 in the right panel. The scattering cross section
profile is also shown as a light line in the lower left of all three panels with the scale shown on the right axis.
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