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1. INTRODUCTION   
 

The application of integral constraints to a numerically 
integrated system of dynamical equations is a method 
by which one can insure that a chaotic flow maintains 
its integrity. Such constraints have been a mainstay of 
climate models, largely out of necessity to eliminate 
unrealistic long term trends in such quantities as 
enstrophy, entropy, mass, momentum, energy, 
moisture and so on. It is interesting that although 
large eddy simulations (LESs) deal with a similar 
long-term integration problem (i.e. simulations over 
many eddy lifetimes), there has been little attention 
paid to the integrity of the conservation properties of 
the underlying dynamics schemes. This may in part 
be due to the strong emphasis that has been placed 
upon the subgrid scale diffusion schemes that are 
typically used to complement the dynamics schemes 
and in effect compensate for many of their flaws, in 
addition to acting as a physical representation of 
subgrid scale turbulence.  

The Ekman boundary layer is ideal for isolating the 
integrity of the dynamics model of an LES because, 
except for the surface friction, the flow dynamics are 
completely inertial and do not involve the effect of 
stable stratification.  The classic Ekman solution for 
the vertical structure of the horizontal velocity is 
derived analytically from a prescribed geostrophic 
wind forcing, Coriolis parameter, surface friction and 
the assumption of eddy mixing in the parabolic 
Smagorinsky form. The solution is the so-called  
“Ekman Spiral”.  The solution is robust, i .e. not highly 
sens itive to surface friction parameterizations, nor to 
the precise formulation of the eddy-mixing coefficient. 

Andren et al. (1994) compared the results (i.e. profiles 
of flux, variance, etc.) of four LES codes each 
simulating the classic Ekman boundary layer under a 
prescribed model configuration.   The four schemes 
compared included one featuring a spectral scheme 
applied in the horizontal and finite difference in the 
vertical, and three others featuring a finite difference 
scheme in all three directions.  None of schemes 
tested featured enstrophy conserving operators in all 
three directions.  The closest of the schemes was the 
horizontal spectral scheme, which has no truncation 
on the linear part of the horizontal advection.  In fact, 

only this scheme was run without a Galilean 
transformation (removal of mean velocity), most 
probably because of the destructive effects of truncation 
error present in the other schemes. 

In each case, the LES simulates the Ekman layer with a 
combination of explicit and subgrid-scale transport.  To 
the extent that the velocity profile is determined by the 
subgrid-scale transport, the simulation would be 
expected to reproduce the Ekman spiral.  To the extent 
that the explicit large-eddy transport is down gradient 
and reproduces Smagorinsky, the explicit transport can 
also reproduce the Ekman Spiral.   

Some numerical schemes, such as forward up-winding 
schemes, often have a built in implicit diffusion that may 
implicitly reproduce Smagorinsky mixing and push the 
solution towards the traditional Ekman solution.  
Numerical advection schemes with out diffusion added, 
such as second order leapfrog, have a strong tendency 
toward nonlinear instability over long-term integrations 
due to aliasing or alternatively, because of a lack of 
enstrophy conservation.  These problems are typically 
controlled with the addition of subgrid-scale diffusion 
that acts to damp the short wavelength features and 
control the numerically generated enstrophy cascade.  
Doubling as “physical subgrid-diffusion”, these 
numerical corrections are indistinguishable from the real 
subgrid scale diffusion that exists for physical reasons.  
So as numerical truncation leads to enstrophy cascade, 
the physical diffusion resulting again mimics the classic 
parabolic Ekman solution, driving the solution to look 
more “classic” and at least appear reasonable. 

This poses the question: How should a true hyperbolic 
Ekman solution, independent of prescribed or implied 
Smagorinsky mixing, look?  We cannot represent an 
infinite series numerically nor solve the three-
dimensional nonlinear problem analytically.  There are, 
however, techniques for improving the integrity of a 
numerical advective scheme to conserve enstropy in the 
2D limit and so reduce or eliminate the numerical 
enstrophy cascade. That in turn requires the parabolic 
destabilization techniques such as Smagorinsky 
diffusion or implicit diffusion built into the scheme.  
Because there is a “physical” enstrophy cascade in 
three-dimensions, the implementation of an enstrophy 
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conserving scheme in all three vorticity planes does 
not eliminate the need for subgrid-scale diffusion.  
Rather, it tends to isolate a more physical role for 
subgrid-scale turbulence, consistent with the 
intentions of the many LES investigators that 
formulate these closures. 

In this paper we study the performance of four 
advection schemes, having varying degrees of 
imposed integral constraints, on the simulation of the 
classic Ekman boundary layer.  The four schemes we 
compare emphasize (1) momentum conservation, (2) 
simple enstrophy conservation for nondivergent flow, 
(i.e. Sadourny, 1974), and (3) enstrophy conservation 
for divergent flow (i.e. Arakawa and Lamb 1981) and 
(4) a simple second order finite difference form of the 
equations in advective form.  

2.  FORMS OF THE ADVECTION EQUATION 

The second order advective form of the advection 
equation is, in tensor form: 
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The first term on the RHS is the advection term and 
the second term is the Coriolis term with the 
geostrophic base state removed.  Considering finite 
differencing on an Arakawa “C” grid, the “advective” 
finite difference form of the  “u” advection term is: 
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and  the averaging operator is: 
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Alternatively, the momentum conserving form is 
written: 
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which has a finite difference form: : 
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The non-divergent enstrophy conserving form of the 
equation of motion can be written: 
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where the kinetic energy, 2d potential vorticity and 
relative vorticity are defined: 
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For reference, it is interesting to note that the Ertel 
potential vorticity is related to η  by: 
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The 2d potential vorticity is finite differenced as: 
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Note that the vorticity is averaged twice in the direction 
of the vorticity vector.  This has two purposes.  First it 
defines all three 2d potential vorticity components at a 
unique point, being the corner of the 3d grid cube that is 



coincident with the 3d Ertel potential vorticity point.  
The final vorticity used in the calculation is then 
coupled into the 3d definition.  Second, this couples 
the rotational dynamics three-dimensionally.  For a 
two-dimensional application, this averaging has no 
effect. 

Note also that the “j” value of vorticity is referenced by 
both of the i j≠  component equations of velocity.  
Hence both component equations reference the same 
finite differenced evaluation of vorticity.  That would 
not be the case for the momentum conserving form of 
the equations where different finite differenced 
vorticity fields are implied from each of the two 
component equations affected by vorticity.   The 
requirement of numerical consistency is part of the 
basis of vorticity and enstrophy conservation. 

The 2nd order enstrophy conserving finite difference 
forms derived by Sadourny (1975), updated by 
Arakawa and Lamb (1981) and applied to three 
dimensions by Tripoli (1991) are written here for the 
case of the vertical vorticity component of the “u” 
equation: 
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where the 3 point enstrophy conserving vorticity 
averaging operators are defined as: 
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The four divergence correction parameters are 
defined: 
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The bracket notation demonstrates the direction of the 
difference operator relative to the averaging operators 
given in eqs. 12. The angle bracket represents the three 
η  positions described in eqs. (12) and the diagonal line 
represents the direction of the correction term described 
by the del operator in equation (12).  These correction 
terms apply only to the Arakawa and Lamb (1981) 
technique and are zero for the Sadourny technique.  
These terms arise to represent the potential vorticity 
response to the density effects of divergence effects in 
the two-dimensional limit. They are particularly 
important in the vertical plane where density varies 
strongly.  Analogous terms are formulated for the “y 
component” of vorticity in the “u equation” and for the 
analogous terms in the “v” and  “w” equation. 

A finite difference form for the kinetic energy is now 
required.  Kinetic energy is defined at the grid center 
point on the “C” grid, and a simple average of the 
velocities across this point is possible.  Arakawa and 
Lamb (1981) found rare instabilities could result and 
suggested an alternative form.  Tripoli (1991) also 
proposed an alternative averaging form for kinetic 
energy.  Experiments with the present Ekman test, 
however, revealed serious weaknesses with all of the 
above approaches, especially when strong mean winds 
are present.  The weakness arises from the implicit 
effect on momentum conservation when the kinetic 
energy gradient terms of the orthogonal wind do not 
cancel with their opposite within the vorticity 
acceleration terms.  The result is enstrophy 
conservation at the expense of momentum conservation 
and the spurious acceleration of flows in the vicinity of 
large kinetic energy gradients.  In fact, in large eddy 
simulations, this acceleration may appear as physical 
role type structures, parallel to the wind.  These affects 
were corrected by the kinetic energy averaging 
operator: 
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where the  “3x,3y,3z” averages are 3 point averages: 
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From these operators, the inertial terms are finite 
differenced: 
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Because of the three dimensional nature of turbulent 
flow, both enstrophy conserving schemes are applied 
separately in all three dimensions, rather than only in 
the vertical as in the original climate model 
applications.  

3.  EXPERIMENT DESIGN 

The four numerical schemes described above were 
applied to the Andren et al. (1994) grid experimental 
setup.  That setup studied a mean 10 m/s geostrophic 
wind resolved by a grid of 40 cells in each direction 
having 100 m spacing in the along wind direction, 50 
m in the horizontal direction perpendicular to the 
geostrophic wind and 37.5 meters in the vertical.  
Turbulence intensity was set as in the Moeng design.  
The experiments were each initiated with a classic 
horizontally homogeneous wind with shear of the 
classic Ekman spiral and perturbed by random 
perturbation of intensity proportional to the shear 
related turbulent kinetic energy. 

One of the four Andren et al. (1994) experiments were 
run with no Galilean transformation (no mean wind 
removed) while the others incorporated some 
transformation, presumably to reduce the absolute 
phase-error of their finite difference scheme.  The 
case not using the transformation was a horizontally 
spectral model. 

The present setup repeats the Andren et al. (1994) 
cases with and without the Galilean transformation.  
In order to eliminate grid anisotropy as a factor, the 
experiments were also repeated with a constant 50 m 
resolution in each direction. Also in order to expose 
the behavior of the numerical scheme, often masked 
by the strong role of diffusion, the Strength coefficient 
of the Smagorinsky diffusion was reduced to 0.5 the 
typical value used.   

In all, 16 experiments were run. 

 

 

4.  RESULTS 

The results suggest that the explicit transport is 
constantly being complimented by subgrid scale 
transport as one would expect.  But the results also 
suggest the more numerical enstrophy cascade created 
by a scheme, the stronger the subgrid scale diffusion 
becomes to control the instability.  Because the Ekman 
solution is analytically derived with a similar scheme, the 
mean wind profile resulting tends to look very close to 
the analytical profile.  On the other hand, if the explicit 
large eddies are handled by an enstrophy conserving 
scheme that prevents enstrophy cascade, the subgrid 
scale diffusion plays a more minor role in the solution 
and some differences with the classic Ekman solution 
are noted.  Most noticeable is the tendency to reduce 
the angle to the geostrophic wind near the surface 
compared to that of the Ekman solution. 

The results also show a very large sensitivity of 
structure and numerical enstrophy cascade to the level 
of mean wind.  These sensitivities were much worse in 
the case of the anisotropic grid where the along wind 
resolution and truncation error was reduced.  The 
Arakawa and Lamb enstrophy-conserving operator 
seemed to be the most immune to these problems. 

The full details of these simulations will be presented at 
the conference. 
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