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(1) Introduction(1) Introduction
Mixed-phase stratiform clouds are commonly observed at high latitudes (Shupe et al., 
2006; de Boer et al., 2009a).  These clouds significaly impact the atmospheric radiative 
budget, with reductions in wintertime radiative surface cooling estimated at 40-50 
Wm-2 (Curry et al., 1996).  Both modeling and observational studies (e.g. Harrington et 
al., 1999; Jiang et al., 2000; Shupe et al., 2008; Klein et al., 2009) reveal apparent con-
nections between ice nucleation and cloud lifecycle.  Unfortunately, mechanisms by 
which ice is formed in these clouds are not yet fully understood.  

Aerosol observations from the Arctic often show mixed aerosol particles containing 
both soluble and insoluble mass (Leaitch et al., 1984).  Soluble mass fractions for these 
particles have been shown to be high, with estimates of  60-80% and are often made up 
of  sulfates (Zhou et al., 2001; Bigg and Leck, 2001).  Since these mixed particles may 
initially nucleate liquid droplets that contain insoluble mass, immersion freezing has 
been theorized to contribute to ice nucleation in these clouds (de Boer et al., 2009b).

In this work, we present a numerical sensitivity study investigating effects of  aerosol 
properties on immersion freezing in a mixed-phase stratiform cloud.  Immersion freez-
ing is represented using a parameterization from Diehl and Wurzler (2004).  Motivation 
for this work stems from data gathered from the ARM Mixed-Phase Arctic Cloud Experi-
ment (M-PACE, Verlinde et al., 2007) and the ARM/GCSS modeling intercomparison 
study for single-layer mixed-phase clouds (Klein et al., 2009).

(2) What is Immersion Freezing?(2) What is Immersion Freezing?

Dynamical Alteration of 
Particle (Temperature,  
Concentration, etc.)

In immersion freezing, a liquid droplet forms on a mixed aerosol particle containing both 
soluble and insoluble mass fractions.  The insoluble mass fraction becomes immersed in 
the droplet, which consists of  a solution of  the aerosol soluble mass and water.  The 
droplet then may grow or be exposed to  a colder temperature, at which point freezing 
initiates, and an ice particle is nucleated.

Radiative cooling from the surface leads 
to the saturation of  a moist layer, and a 
liquid cloud forms.  Some of  these liquid 
droplets contain IN that had been coated 
in soluble material.

Radiative cooling from cloud top leads to 
vertical motion within the cloud layer.  
Droplets in the updrafts cool through ex-
pansion and accumulate liquid mass 
through condensational growth, de-
creasing droplet soluble mass fraction.
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Growth of  these ice particles uses up 
available moisture, and further droplet 
growth (and therefore ice formation) is 
limited.  The ice particles rapidly grow to 
a size where they precipitate from the 
cloud layer, and the cycle starts over.

The fraction of  soluble mass in the grow-
ing drops decreases to the point where 
freezing is no longer inhibited at the cur-
rent temperature, and the larger droplets 
nucleate into ice particles through the 
immersion freezing process.   

In mixed-phase stratiform clouds:
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Different materials provide different freezing efficiencies.  
Therefore, the insoluble mass type is an important regula-
tor of  droplet freezing ability.

Insoluble Mass Type Soluble Mass Fraction

A higher percentage of  soluble material associated with 
the nucleating aerosol will increase the solution effect 
freezing point depression.
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It is unrealistic to believe that immersion freezing is the only 
active ice nucleation mechanism in these clouds.  Here, we 
run simulations with immersion, deposition and condensa-
tion freezing active, with variable contributions to ice con-
centration from deposition/condensation freezing.
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Realistic Simulation
- Immersion and deposition/condensation freezing active
- Reduced IN concentration (0.17 L-¹) from CFDC esti-
mates to avoid immersion freezing “double counting”.
- A soot insoluble mass fraction for CCN.
- 70% soluble mass fraction for CCN.

Time (hrs)
0 5 10 15 20

IW
P 

(k
g/

m
2 )

LW
P 

(k
g/

m
2 )

0.002

0.004

0.006

0.01
0.03
0.05

0.07

H
ei

g
h

t (
km

)

0

0.2

0.4

Distance (km)
2 6 10 14 2 6 10 14

-8 -4 0

T = 9 hours

Deposition (left) and
Immersion (right) 

freezing rates 
(log₁₀(L-¹s-¹))

- Immersion freezing contributes significantly to ice for-
mation in simulated clouds

- The freezing efficiencies of  droplets containing differ-
ent insoluble mass types vary widely, and strongly 
modulate simulated liquid and ice water paths

- Increasing CCN soluble mass fraction increases the 
freezing point depression, resulting in delayed freezing 
of  droplets

- Inclusion of  a freezing point depression calculation re-
sults in a reduction of  ice formed from haze particles 
below the liquid cloud base

- A realistic simulation was completed with both 
deposition/condensation and immersion freezing active


